Extracting the fundamental diagram from aerial footage
- URL: http://arxiv.org/abs/2007.03227v2
- Date: Mon, 13 Jul 2020 13:40:41 GMT
- Title: Extracting the fundamental diagram from aerial footage
- Authors: Rafael Makrigiorgis, Panayiotis Kolios, Stelios Timotheou, Theocharis
Theocharides, Christos G. Panayiotou
- Abstract summary: Efficient traffic monitoring is playing a fundamental role in successfully tackling congestion in transportation networks.
In this paper we devise an innovative way to obtain the fundamental diagram through aerial footage obtained from drone platforms.
The derived methodology consists of 3 phases: vehicle detection, vehicle tracking and traffic state estimation.
- Score: 6.780998887296333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient traffic monitoring is playing a fundamental role in successfully
tackling congestion in transportation networks. Congestion is strongly
correlated with two measurable characteristics, the demand and the network
density that impact the overall system behavior. At large, this system behavior
is characterized through the fundamental diagram of a road segment, a region or
the network. In this paper we devise an innovative way to obtain the
fundamental diagram through aerial footage obtained from drone platforms. The
derived methodology consists of 3 phases: vehicle detection, vehicle tracking
and traffic state estimation. We elaborate on the algorithms developed for each
of the 3 phases and demonstrate the applicability of the results in a
real-world setting.
Related papers
- Three Pillars Towards Next-Generation Routing System [15.273941564295363]
We propose a next-generation routing paradigm that could reduce traffic congestion by considering the influence of the routing results in real-time.
To implement such a system, we identify three essential components: 1) the traffic condition simulation that establishes the relation between traffic flow and traffic condition with guaranteed accuracy; 2) the future route management that supports efficient simulation with dynamic route update; and 3) the global routing optimization that improves the overall transportation system efficiency.
arXiv Detail & Related papers (2024-09-03T16:32:30Z) - Graph Attention Network for Lane-Wise and Topology-Invariant Intersection Traffic Simulation [8.600701437207725]
We propose two efficient and accurate "Digital Twin" models for intersections.
These digital twins capture temporal, spatial, and contextual aspects of traffic within intersections.
Our study's applications extend to lane reconfiguration, driving behavior analysis, and facilitating informed decisions regarding intersection safety and efficiency enhancements.
arXiv Detail & Related papers (2024-04-11T03:02:06Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
We present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2.
arXiv Detail & Related papers (2023-04-11T15:23:29Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Traffic-Net: 3D Traffic Monitoring Using a Single Camera [1.1602089225841632]
We provide a practical platform for real-time traffic monitoring using a single CCTV traffic camera.
We adapt a custom YOLOv5 deep neural network model for vehicle/pedestrian detection and an enhanced SORT tracking algorithm.
We also develop a hierarchical traffic modelling solution based on short- and long-term temporal video data stream.
arXiv Detail & Related papers (2021-09-19T16:59:01Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.