Knowledge-Informed Multi-Agent Trajectory Prediction at Signalized Intersections for Infrastructure-to-Everything
- URL: http://arxiv.org/abs/2501.13461v1
- Date: Thu, 23 Jan 2025 08:23:45 GMT
- Title: Knowledge-Informed Multi-Agent Trajectory Prediction at Signalized Intersections for Infrastructure-to-Everything
- Authors: Huilin Yin, Yangwenhui Xu, Jiaxiang Li, Hao Zhang, Gerhard Rigoll,
- Abstract summary: We propose a multi-agent trajectory prediction framework at signalized intersections dedicated to Infrastructure-to-Everything (I2XTraj)
Our framework leverages dynamic graph attention to integrate knowledge from traffic signals and driving behaviors.
Our approach outperforms existing methods by more than 30% in both multi-agent and single-agent scenarios.
- Score: 7.452533291998081
- License:
- Abstract: Multi-agent trajectory prediction at signalized intersections is crucial for developing efficient intelligent transportation systems and safe autonomous driving systems. Due to the complexity of intersection scenarios and the limitations of single-vehicle perception, the performance of vehicle-centric prediction methods has reached a plateau. Furthermore, most works underutilize critical intersection information, including traffic signals, and behavior patterns induced by road structures. Therefore, we propose a multi-agent trajectory prediction framework at signalized intersections dedicated to Infrastructure-to-Everything (I2XTraj). Our framework leverages dynamic graph attention to integrate knowledge from traffic signals and driving behaviors. A continuous signal-informed mechanism is proposed to adaptively process real-time traffic signals from infrastructure devices. Additionally, leveraging the prior knowledge of the intersection topology, we propose a driving strategy awareness mechanism to model the joint distribution of goal intentions and maneuvers. To the best of our knowledge, I2XTraj represents the first multi-agent trajectory prediction framework explicitly designed for infrastructure deployment, supplying subscribable prediction services to all vehicles at intersections. I2XTraj demonstrates state-of-the-art performance on both the Vehicle-to-Infrastructure dataset V2X-Seq and the aerial-view dataset SinD for signalized intersections. Quantitative evaluations show that our approach outperforms existing methods by more than 30% in both multi-agent and single-agent scenarios.
Related papers
- Cross-Domain Transfer Learning using Attention Latent Features for Multi-Agent Trajectory Prediction [4.292918274985369]
We propose a novel spatial-temporal trajectory prediction framework that performs cross-domain adaption on the attention representation of a Transformer-based model.
A graph convolutional network is also integrated to construct dynamic graph feature embeddings that accurately model the complex spatial-temporal interactions between the multi-agent vehicles.
arXiv Detail & Related papers (2024-11-09T06:39:44Z) - TrafficGPT: Towards Multi-Scale Traffic Analysis and Generation with Spatial-Temporal Agent Framework [3.947797359736224]
We have designed a multi-scale traffic generation system, TrafficGPT, using three AI agents to process multi-scale traffic data.
TrafficGPT consists of three essential AI agents: 1) a text-to-demand agent to interact with users and extract prediction tasks through texts; 2) a traffic prediction agent that leverages multi-scale traffic data to generate temporal features and similarity; and 3) a suggestion and visualization agent that uses the prediction results to generate suggestions and visualizations.
arXiv Detail & Related papers (2024-05-08T07:48:40Z) - KI-GAN: Knowledge-Informed Generative Adversarial Networks for Enhanced Multi-Vehicle Trajectory Forecasting at Signalized Intersections [15.464952852717127]
We present a novel model called Knowledge-Informed Generative Adversarial Network (KI-GAN), which integrates traffic signal information and multi-vehicle interactions to predict vehicle trajectories accurately.
Based on the SinD dataset, our KI-GAN model is able to achieve an Average Displacement Error (ADE) of 0.05 and a Final Displacement Error (FDE) of 0.12 for a 6-second observation and 6-second prediction cycle.
arXiv Detail & Related papers (2024-04-17T08:53:59Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-modal Trajectory Prediction for Autonomous Driving with Semantic
Map and Dynamic Graph Attention Network [12.791191495432829]
There are several challenges in trajectory prediction in real-world traffic scenarios.
Inspired by people's natural habit of navigating traffic with attention to their goals and surroundings, this paper presents a unique graph attention network.
The network is designed to model the dynamic social interactions among agents and conform to traffic rules with a semantic map.
arXiv Detail & Related papers (2021-03-30T11:53:12Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.