Innovative And Additive Outlier Robust Kalman Filtering With A Robust
Particle Filter
- URL: http://arxiv.org/abs/2007.03238v1
- Date: Tue, 7 Jul 2020 07:11:09 GMT
- Title: Innovative And Additive Outlier Robust Kalman Filtering With A Robust
Particle Filter
- Authors: Alexander T. M. Fisch, Idris A. Eckley, P. Fearnhead
- Abstract summary: We propose CE-BASS, a particle mixture Kalman filter which is robust to both innovative and additive outliers, and able to fully capture multi-modality in the distribution of the hidden state.
Furthermore, the particle sampling approach re-samples past states, which enables CE-BASS to handle innovative outliers which are not immediately visible in the observations, such as trend changes.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose CE-BASS, a particle mixture Kalman filter which is
robust to both innovative and additive outliers, and able to fully capture
multi-modality in the distribution of the hidden state. Furthermore, the
particle sampling approach re-samples past states, which enables CE-BASS to
handle innovative outliers which are not immediately visible in the
observations, such as trend changes. The filter is computationally efficient as
we derive new, accurate approximations to the optimal proposal distributions
for the particles. The proposed algorithm is shown to compare well with
existing approaches and is applied to both machine temperature and server data.
Related papers
- Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Nonlinear Filtering with Brenier Optimal Transport Maps [4.745059103971596]
This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a dynamical system.
Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states.
In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step.
arXiv Detail & Related papers (2023-10-21T01:34:30Z) - Filter Pruning for Efficient CNNs via Knowledge-driven Differential
Filter Sampler [103.97487121678276]
Filter pruning simultaneously accelerates the computation and reduces the memory overhead of CNNs.
We propose a novel Knowledge-driven Differential Filter Sampler(KDFS) with Masked Filter Modeling(MFM) framework for filter pruning.
arXiv Detail & Related papers (2023-07-01T02:28:41Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative
Filtering [59.349057602266]
Variational AutoEncoder (VAE) has been extended as a representative nonlinear method for collaborative filtering.
We propose to decompose the inner-product-based softmax probability based on the inverted multi-index.
FastVAE can outperform the state-of-the-art baselines in terms of both sampling quality and efficiency.
arXiv Detail & Related papers (2021-09-13T08:31:59Z) - Deep Convolutional Correlation Iterative Particle Filter for Visual
Tracking [1.1531505895603305]
This work proposes a novel framework for visual tracking based on the integration of an iterative particle filter, a deep convolutional neural network, and a correlation filter.
We employ a novel strategy to assess the likelihood of the particles after the iterations by applying K-means clustering.
Experimental results on two different benchmark datasets show that our tracker performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2021-07-07T02:44:43Z) - Multiplicative Gaussian Particle Filter [18.615555573235987]
We propose a new sampling-based approach for approximate inference in filtering problems.
Instead of approximating conditional distributions with a finite set of states, as done in particle filters, our approach approximates the distribution with a weighted sum of functions from a set of continuous functions.
arXiv Detail & Related papers (2020-02-29T09:19:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.