An Augmented Reality Platform for Introducing Reinforcement Learning to
K-12 Students with Robots
- URL: http://arxiv.org/abs/2110.04697v1
- Date: Sun, 10 Oct 2021 03:51:39 GMT
- Title: An Augmented Reality Platform for Introducing Reinforcement Learning to
K-12 Students with Robots
- Authors: Ziyi Zhang, Samuel Micah Akai-Nettey, Adonai Addo, Chris Rogers, Jivko
Sinapov
- Abstract summary: We propose an Augmented Reality (AR) system that reveals the hidden state of the learning to the human users.
This paper describes our system's design and implementation and concludes with a discussion on two directions for future work.
- Score: 10.835598738100359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactive reinforcement learning, where humans actively assist during an
agent's learning process, has the promise to alleviate the sample complexity
challenges of practical algorithms. However, the inner workings and state of
the robot are typically hidden from the teacher when humans provide feedback.
To create a common ground between the human and the learning robot, in this
paper, we propose an Augmented Reality (AR) system that reveals the hidden
state of the learning to the human users. This paper describes our system's
design and implementation and concludes with a discussion on two directions for
future work which we are pursuing: 1) use of our system in AI education
activities at the K-12 level; and 2) development of a framework for an AR-based
human-in-the-loop reinforcement learning, where the human teacher can see
sensory and cognitive representations of the robot overlaid in the real world.
Related papers
- On the Effect of Robot Errors on Human Teaching Dynamics [1.7249361224827533]
We investigate how the presence and severity of robot errors affect three dimensions of human teaching dynamics.
Results show that people tend to spend more time teaching robots with errors.
Our findings offer valuable insights for designing effective interfaces for interactive learning.
arXiv Detail & Related papers (2024-09-15T19:02:34Z) - Advancing Household Robotics: Deep Interactive Reinforcement Learning for Efficient Training and Enhanced Performance [0.0]
Reinforcement learning, or RL, has emerged as a key robotics technology that enables robots to interact with their environment.
We present a novel method to preserve and reuse information and advice via Deep Interactive Reinforcement Learning.
arXiv Detail & Related papers (2024-05-29T01:46:50Z) - Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEAR enables robots to be placed in real-world environments and left to train autonomously without interruption.
System streams robot experience to a web interface only requiring occasional asynchronous feedback from remote, crowdsourced, non-expert humans.
arXiv Detail & Related papers (2023-10-31T16:43:56Z) - Human in the AI loop via xAI and Active Learning for Visual Inspection [2.261815118231329]
Industrial revolutions have disrupted manufacturing by introducing automation into production.
Advances in robotics and artificial intelligence open new frontiers of human-machine collaboration.
The present work first describes Industry 5.0, human-machine collaboration, and state-of-the-art regarding quality inspection.
arXiv Detail & Related papers (2023-07-03T17:23:23Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Deep Reinforcement Learning with Interactive Feedback in a Human-Robot
Environment [1.2998475032187096]
We propose a deep reinforcement learning approach with interactive feedback to learn a domestic task in a human-robot scenario.
We compare three different learning methods using a simulated robotic arm for the task of organizing different objects.
The obtained results show that a learner agent, using either agent-IDeepRL or human-IDeepRL, completes the given task earlier and has fewer mistakes compared to the autonomous DeepRL approach.
arXiv Detail & Related papers (2020-07-07T11:55:27Z) - Learning to Complement Humans [67.38348247794949]
A rising vision for AI in the open world centers on the development of systems that can complement humans for perceptual, diagnostic, and reasoning tasks.
We demonstrate how an end-to-end learning strategy can be harnessed to optimize the combined performance of human-machine teams.
arXiv Detail & Related papers (2020-05-01T20:00:23Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
We discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world.
We propose a particular instantiation of such a system, using dexterous manipulation as our case study.
We demonstrate that our complete system can learn without any human intervention, acquiring a variety of vision-based skills with a real-world three-fingered hand.
arXiv Detail & Related papers (2020-04-27T03:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.