Practical Quantum Key Distribution Secure Against Side-Channels
- URL: http://arxiv.org/abs/2007.03364v2
- Date: Thu, 23 Jul 2020 09:44:41 GMT
- Title: Practical Quantum Key Distribution Secure Against Side-Channels
- Authors: \'Alvaro Navarrete, Margarida Pereira, Marcos Curty and Kiyoshi Tamaki
- Abstract summary: We introduce a measurement-device-independent (MDI) QKD type of protocol based on the transmission of coherent light.
We prove its security against any possible device imperfection and/or side-channel at the transmitters' side.
The performance of the protocol is comparable to other MDI-QKD type of protocols which disregard the effect of several side-channels.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a big gap between theory and practice in quantum key distribution
(QKD) because real devices do not satisfy the assumptions required by the
security proofs. Here, we close this gap by introducing a simple and practical
measurement-device-independent (MDI) QKD type of protocol, based on the
transmission of coherent light, for which we prove its security against any
possible device imperfection and/or side-channel at the transmitters' side.
Besides using a much simpler experimental set-up and source characterization
with only one single parameter, we show that the performance of the protocol is
comparable to other MDI-QKD type of protocols which disregard the effect of
several side-channels.
Related papers
- Orthogonal-state-based Measurement Device Independent Quantum Communication [32.244698777387995]
We propose a new protocol of measurement-device-independent quantum secure direct communication and quantum dialogue employing single basis, i.e., Bell basis as decoy qubits for eavesdropping detection.
Our protocols leverage fundamentally distinct resources to close the security loopholes linked to measurement devices, while also effectively doubling the distance for secure direct message transmission.
arXiv Detail & Related papers (2024-09-30T15:57:17Z) - Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass.
Existing single-round protocols require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements.
We construct efficient single-round proofs of quantumness based on existing knowledge assumptions.
arXiv Detail & Related papers (2024-05-24T17:33:10Z) - Differential-phase-shift QKD with practical Mach-Zehnder interferometer [0.0]
We enhance the implementation security of the DPS protocol by incorporating a major imperfection in the measurement unit.
Our numerical simulations demonstrate that even with fluctuations of $pm0.5%$ in the transmittance from the ideal value, the key rate degrades only by a factor of 0.57.
arXiv Detail & Related papers (2024-05-20T03:38:02Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
arXiv Detail & Related papers (2023-11-16T13:01:34Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Prospects for device-independent quantum key distribution [0.0]
Device-independent quantum key distribution (DIQKD) aims to achieve secure key distribution with only minimal assumptions.
We present security proofs for several techniques that help to improve the keyrates and noise tolerance of DIQKD.
arXiv Detail & Related papers (2021-11-23T10:28:30Z) - Unbalanced-basis-misalignment tolerant measurement-device-independent
quantum key distribution [22.419105320267523]
Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side.
Some protocols release part of the assumptions in the encoding system to keep the practical security, but the performance would be dramatically reduced.
We present a MDIQKD protocol that requires less knowledge of encoding system to combat the troublesome modulation errors and fluctuations.
arXiv Detail & Related papers (2021-08-27T02:16:20Z) - Measurement-device-independent quantum key distribution with insecure
sources [11.835944016730302]
Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side-channel loopholes and has shown excellent performance in long-distance secret keys sharing.
Here, we present a general formalism based on reference technique to prove proofs of MDI-QKD against any possible sources imperfection/or side channels.
arXiv Detail & Related papers (2021-07-16T10:14:57Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.