Measurement-device-independent quantum key distribution with insecure
sources
- URL: http://arxiv.org/abs/2107.07803v1
- Date: Fri, 16 Jul 2021 10:14:57 GMT
- Title: Measurement-device-independent quantum key distribution with insecure
sources
- Authors: Hua-Jian Ding, Xing-Yu Zhou, Chun-Hui Zhang, Jian Li and Qin Wang
- Abstract summary: Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side-channel loopholes and has shown excellent performance in long-distance secret keys sharing.
Here, we present a general formalism based on reference technique to prove proofs of MDI-QKD against any possible sources imperfection/or side channels.
- Score: 11.835944016730302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Measurement-device-independent quantum key distribution (MDI-QKD) can
eliminate all detector side-channel loopholes and has shown excellent
performance in long-distance secret keys sharing. Conventional security proofs,
however, require additional assumptions on sources and that can be compromised
through uncharacterized side channels in practice. Here, we present a general
formalism based on reference technique to prove the security of MDI-QKD against
any possible sources imperfection and/or side channels. With this formalism, we
investigate the asymptotic performance of single-photon sources without any
extra assumptions on the state preparations. Our results highlight the
importance of transmitters' security.
Related papers
- Quantum key distribution with imperfectly isolated devices [0.32985979395737774]
We introduce a security proof in the presence of information leakage from all state preparation settings for the decoy-state BB84 protocol.
The proof requires minimal experimental characterization, as only a single parameter related to the isolation of the source needs to be determined.
arXiv Detail & Related papers (2024-11-21T08:59:32Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - A security framework for quantum key distribution implementations [1.2815904071470707]
We present a security proof in the finite-key regime against coherent attacks.
Our proof requires minimal state characterization, which facilitates its application to real-life implementations.
arXiv Detail & Related papers (2023-05-10T07:02:32Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Measurement device-independent quantum key distribution with passive,
time-dependent source side-channels [0.39373541926236766]
We identify a time-dependent side-channel in a common polarization-based QKD source that employs a mirror for phase stabilization.
We develop strategies to quantify the sensitivity of the secret key rate to the quantum optical model for the side-channel, and to mitigate the information leakage.
arXiv Detail & Related papers (2021-08-19T14:08:22Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Practical Quantum Key Distribution Secure Against Side-Channels [0.0]
We introduce a measurement-device-independent (MDI) QKD type of protocol based on the transmission of coherent light.
We prove its security against any possible device imperfection and/or side-channel at the transmitters' side.
The performance of the protocol is comparable to other MDI-QKD type of protocols which disregard the effect of several side-channels.
arXiv Detail & Related papers (2020-07-07T11:56:04Z) - Measurement-Device-Independent Quantum Key Distribution with Leaky
Sources [0.0]
Measurement-device-independent quantum key distribution (MDI-QKD) can remove all detection side-channels from quantum communication systems.
We show that MDI-QKD is feasible within a reasonable time frame of signal transmission given that the sources are sufficiently isolated.
arXiv Detail & Related papers (2020-01-21T08:19:21Z) - Semantic Security for Quantum Wiretap Channels [68.24747267214373]
We consider the problem of semantic security via classical-quantum and quantum wiretap channels.
We use explicit constructions to transform a non-secure code into a semantically secure code, achieving capacity by means of biregular irreducible functions.
arXiv Detail & Related papers (2020-01-16T09:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.