論文の概要: Hierarchical and Unsupervised Graph Representation Learning with
Loukas's Coarsening
- arxiv url: http://arxiv.org/abs/2007.03373v2
- Date: Mon, 17 Aug 2020 15:15:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 18:30:15.615127
- Title: Hierarchical and Unsupervised Graph Representation Learning with
Loukas's Coarsening
- Title(参考訳): ルーカス粗大化を用いた階層的・教師なしグラフ表現学習
- Authors: Louis B\'ethune, Yacouba Kaloga, Pierre Borgnat, Aur\'elien Garivier,
Amaury Habrard
- Abstract要約: 本稿では,属性グラフを用いた教師なしグラフ表現学習法を提案する。
このアルゴリズムは,教師なし表現学習手法における最先端技術と競合することを示す。
- 参考スコア(独自算出の注目度): 9.12816196758482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel algorithm for unsupervised graph representation learning
with attributed graphs. It combines three advantages addressing some current
limitations of the literature: i) The model is inductive: it can embed new
graphs without re-training in the presence of new data; ii) The method takes
into account both micro-structures and macro-structures by looking at the
attributed graphs at different scales; iii) The model is end-to-end
differentiable: it is a building block that can be plugged into deep learning
pipelines and allows for back-propagation. We show that combining a coarsening
method having strong theoretical guarantees with mutual information
maximization suffices to produce high quality embeddings. We evaluate them on
classification tasks with common benchmarks of the literature. We show that our
algorithm is competitive with state of the art among unsupervised graph
representation learning methods.
- Abstract(参考訳): 有意グラフを用いた教師なしグラフ表現学習のための新しいアルゴリズムを提案する。
文学の現在の限界に対処する3つの利点が組み合わさっている。
i) モデルは帰納的であり,新しいデータの存在下で再訓練することなく,新たなグラフを埋め込むことができる。
二 属性グラフを異なるスケールで見ることにより、ミクロ構造とマクロ構造の両方を考慮すること。
三 モデルはエンドツーエンドの差別化が可能で、深層学習パイプラインにプラグインし、バックプロパゲーションを可能にするビルディングブロックである。
高い理論保証を有する粗さ化法と相互情報最大化十分度を組み合わせることで,高品質な埋め込みを実現する。
文献の共通ベンチマークを用いて分類タスクの評価を行った。
本アルゴリズムは教師なしグラフ表現学習手法の最先端技術と競合することを示す。
関連論文リスト
- M3C: A Framework towards Convergent, Flexible, and Unsupervised Learning
of Mixture Graph Matching and Clustering [57.947071423091415]
本稿では,理論収束を保証する学習自由度アルゴリズムであるM3Cを提案する。
我々は、新しいエッジワイド親和性学習と擬似ラベル選択を組み込んだ教師なしモデルUM3Cを開発した。
提案手法は,最先端のグラフマッチングと混合グラフマッチングとクラスタリングの手法を精度と効率の両面で優れている。
論文 参考訳(メタデータ) (2023-10-27T19:40:34Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
グラフ表現学習は多くのグラフマイニングアプリケーションにおいて重要な役割を果たすが、大規模なグラフの埋め込みを学習することは依然として問題である。
最近の研究は、グラフの要約(つまり、より小さな要約グラフへの埋め込みを学習し、元のグラフのノード埋め込みを復元することでスケーラビリティを向上させる。
本稿では,導入したカーネル行列に基づく3つの特定の埋め込み学習手法について,詳細な理論的解析を行う。
論文 参考訳(メタデータ) (2022-07-04T04:09:50Z) - Multi-view graph structure learning using subspace merging on Grassmann
manifold [4.039245878626346]
MV-GSL(Multi-View Graph Structure Learning)と呼ばれる多視点学習を用いた新しいグラフ構造学習手法を提案する。
グラスマン多様体上の部分空間マージを用いた異なるグラフ構造学習法を集約し、学習したグラフ構造の品質を向上させる。
実験の結果,提案手法はグラフ構造学習法とグラフ構造学習法を併用した場合と比較して有望な性能を示した。
論文 参考訳(メタデータ) (2022-04-11T17:01:05Z) - Learning Robust Representation through Graph Adversarial Contrastive
Learning [6.332560610460623]
既存の研究では、グラフニューラルネットワーク(GNN)によって生成されたノード表現が、敵の攻撃に対して脆弱であることが示されている。
本稿では,グラフ自己教師型学習に対数拡張を導入することにより,新しいグラフ適応型コントラスト学習フレームワーク(GraphACL)を提案する。
論文 参考訳(メタデータ) (2022-01-31T07:07:51Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization [5.419711903307341]
グラフニューラルネットワークが学習するグラフレベルの表現を高めるための自己監視型学習法を提案する。
グラフ構造を網羅的に理解するために,サブグラフ法のようなアンサンブル学習を提案する。
また, 効率的かつ効果的な対位学習を実現するために, ヘッドテールコントラストサンプル構築法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:12Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
既存のグラフニューラルネットワークは、計算量やメモリコストが限られているため、完全なグラフデータで供給される。
textscSubg-Conは、中央ノードとそのサンプルサブグラフ間の強い相関を利用して、地域構造情報をキャプチャすることで提案される。
既存のグラフ表現学習アプローチと比較して、textscSubg-Conは、より弱い監視要件、モデル学習のスケーラビリティ、並列化において、顕著なパフォーマンス上のアドバンテージを持っています。
論文 参考訳(メタデータ) (2020-09-22T01:58:19Z) - Deep Graph Mapper: Seeing Graphs through the Neural Lens [4.401427499962144]
我々はMapperとグラフニューラルネットワーク(GNN)の表現力を組み合わせることで、グラフの階層的でトポロジカルな視覚化を生成する。
これらの視覚化は、複雑なグラフの構造を識別するだけでなく、様々なタスクを解くためにそれらに適用されたモデルを理解する手段を提供する。
論文 参考訳(メタデータ) (2020-02-10T15:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。