Gradual Domain Adaptation in the Wild:When Intermediate Distributions
are Absent
- URL: http://arxiv.org/abs/2106.06080v1
- Date: Thu, 10 Jun 2021 22:47:06 GMT
- Title: Gradual Domain Adaptation in the Wild:When Intermediate Distributions
are Absent
- Authors: Samira Abnar, Rianne van den Berg, Golnaz Ghiasi, Mostafa Dehghani,
Nal Kalchbrenner, Hanie Sedghi
- Abstract summary: We focus on the problem of domain adaptation when the goal is shifting the model towards the target distribution.
We propose GIFT, a method that creates virtual samples from intermediate distributions by interpolating representations of examples from source and target domains.
- Score: 32.906658998929394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We focus on the problem of domain adaptation when the goal is shifting the
model towards the target distribution, rather than learning domain invariant
representations. It has been shown that under the following two assumptions:
(a) access to samples from intermediate distributions, and (b) samples being
annotated with the amount of change from the source distribution, self-training
can be successfully applied on gradually shifted samples to adapt the model
toward the target distribution. We hypothesize having (a) is enough to enable
iterative self-training to slowly adapt the model to the target distribution,
by making use of an implicit curriculum. In the case where (a) does not hold,
we observe that iterative self-training falls short. We propose GIFT, a method
that creates virtual samples from intermediate distributions by interpolating
representations of examples from source and target domains. We evaluate an
iterative-self-training method on datasets with natural distribution shifts,
and show that when applied on top of other domain adaptation methods, it
improves the performance of the model on the target dataset. We run an analysis
on a synthetic dataset to show that in the presence of (a)
iterative-self-training naturally forms a curriculum of samples. Furthermore,
we show that when (a) does not hold, GIFT performs better than iterative
self-training.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Universality in Transfer Learning for Linear Models [18.427215139020625]
We study the problem of transfer learning in linear models for both regression and binary classification.
We provide an exact and rigorous analysis and relate generalization errors (in regression) and classification errors (in binary classification) for the pretrained and fine-tuned models.
arXiv Detail & Related papers (2024-10-03T03:09:09Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Delta-AI: Local objectives for amortized inference in sparse graphical models [64.5938437823851]
We present a new algorithm for amortized inference in sparse probabilistic graphical models (PGMs)
Our approach is based on the observation that when the sampling of variables in a PGM is seen as a sequence of actions taken by an agent, sparsity of the PGM enables local credit assignment in the agent's policy learning objective.
We illustrate $Delta$-AI's effectiveness for sampling from synthetic PGMs and training latent variable models with sparse factor structure.
arXiv Detail & Related papers (2023-10-03T20:37:03Z) - Energy-Based Test Sample Adaptation for Domain Generalization [81.04943285281072]
We propose energy-based sample adaptation at test time for domain.
To adapt target samples to source distributions, we iteratively update the samples by energy minimization.
Experiments on six benchmarks for classification of images and microblog threads demonstrate the effectiveness of our proposal.
arXiv Detail & Related papers (2023-02-22T08:55:09Z) - Addressing Distribution Shift at Test Time in Pre-trained Language
Models [3.655021726150369]
State-of-the-art pre-trained language models (PLMs) outperform other models when applied to the majority of language processing tasks.
PLMs have been found to degrade in performance under distribution shift.
We present an approach that improves the performance of PLMs at test-time under distribution shift.
arXiv Detail & Related papers (2022-12-05T16:04:54Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
We use a set of domain-invariant predictors as a proxy for the unknown, true target labels.
The error of the resulting risk estimate depends on the target risk of the proxy model.
arXiv Detail & Related papers (2020-07-06T17:21:24Z) - Incremental Unsupervised Domain-Adversarial Training of Neural Networks [17.91571291302582]
In the context of supervised statistical learning, it is typically assumed that the training set comes from the same distribution that draws the test samples.
Here we take a different avenue and approach the problem from an incremental point of view, where the model is adapted to the new domain iteratively.
Our results report a clear improvement with respect to the non-incremental case in several datasets, also outperforming other state-of-the-art domain adaptation algorithms.
arXiv Detail & Related papers (2020-01-13T09:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.