Segmentation of Pulmonary Opacification in Chest CT Scans of COVID-19
Patients
- URL: http://arxiv.org/abs/2007.03643v2
- Date: Wed, 8 Jul 2020 21:26:06 GMT
- Title: Segmentation of Pulmonary Opacification in Chest CT Scans of COVID-19
Patients
- Authors: Keegan Lensink, Issam Laradji, Marco Law, Paolo Emilio Barbano, Savvas
Nicolaou, William Parker, Eldad Haber
- Abstract summary: We provide open source models for the segmentation of patterns of pulmonary opacification on chest Computed Tomography (CT) scans.
We have collected 663 chest CT scans of COVID-19 patients from healthcare centers around the world.
Our best model achieves an opacity Intersection-Over-Union score of 0.76 on our test set, demonstrates successful domain adaptation, and predicts the volume of opacification within 1.7% of expert radiologists.
- Score: 3.140265238474236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has rapidly
spread into a global pandemic. A form of pneumonia, presenting as opacities
with in a patient's lungs, is the most common presentation associated with this
virus, and great attention has gone into how these changes relate to patient
morbidity and mortality. In this work we provide open source models for the
segmentation of patterns of pulmonary opacification on chest Computed
Tomography (CT) scans which have been correlated with various stages and
severities of infection. We have collected 663 chest CT scans of COVID-19
patients from healthcare centers around the world, and created pixel wise
segmentation labels for nearly 25,000 slices that segment 6 different patterns
of pulmonary opacification. We provide open source implementations and
pre-trained weights for multiple segmentation models trained on our dataset.
Our best model achieves an opacity Intersection-Over-Union score of 0.76 on our
test set, demonstrates successful domain adaptation, and predicts the volume of
opacification within 1.7\% of expert radiologists. Additionally, we present an
analysis of the inter-observer variability inherent to this task, and propose
methods for appropriate probabilistic approaches.
Related papers
- A framework for quantitative analysis of Computed Tomography images of
viral pneumonitis: radiomic features in COVID and non-COVID patients [0.0]
1028 chest CT image of patients with positive swab were segmented automatically for lung extraction.
A Gaussian model was applied to calculate quantitative metrics (QM) describing well-aerated and ill portions of the lungs.
Radiomic features (RF) of first and second order were extracted from bilateral lungs.
Four artificial intelligence-based models for classifying patients with COVID and non-COVID viral pneumonia were developed.
arXiv Detail & Related papers (2021-09-28T15:22:24Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - Rapid quantification of COVID-19 pneumonia burden from computed
tomography with convolutional LSTM networks [1.0072268949897432]
We propose a new fully automated deep learning framework for rapid quantification and differentiation between lung lesions in COVID-19 pneumonia.
The performance of the method was evaluated on CT data sets from 197 patients with positive reverse transcription polymerase chain reaction test result for SARS-CoV-2.
arXiv Detail & Related papers (2021-03-31T22:09:14Z) - Probabilistic combination of eigenlungs-based classifiers for COVID-19
diagnosis in chest CT images [6.1020196190084555]
More than 100 million confirmed cases of COVID-19, including more than 2.4 million deaths.
The use of medical imaging such as chest X-ray (CXR) and chest Computed Tomography (CCT) have proved to be an excellent solution.
We propose an ensemble classifier based on probabilistic Support Vector Machine (SVM) in order to identify pneumonia patterns.
arXiv Detail & Related papers (2021-03-04T11:30:38Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Deep learning to estimate the physical proportion of infected region of
lung for COVID-19 pneumonia with CT image set [13.146276716689972]
The proportion of infected regions of lung could be used as a visual evidence to assist clinical physician to determine the severity of the case.
A quantified report of infected regions can help predict the prognosis for COVID-19 cases which were scanned periodically within the treatment cycle.
arXiv Detail & Related papers (2020-06-09T02:38:40Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.