論文の概要: Detection as Regression: Certified Object Detection by Median Smoothing
- arxiv url: http://arxiv.org/abs/2007.03730v4
- Date: Fri, 25 Feb 2022 14:23:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 19:32:20.385860
- Title: Detection as Regression: Certified Object Detection by Median Smoothing
- Title(参考訳): 回帰による検出:中央スムージングによる認定対象検出
- Authors: Ping-yeh Chiang, Michael J. Curry, Ahmed Abdelkader, Aounon Kumar,
John Dickerson, Tom Goldstein
- Abstract要約: この研究は、ランダム化平滑化による認定分類の最近の進歩によって動機付けられている。
我々は、$ell$-bounded攻撃に対するオブジェクト検出のための、最初のモデル非依存、トレーニング不要、認定された防御条件を得る。
- 参考スコア(独自算出の注目度): 50.89591634725045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the vulnerability of object detectors to adversarial attacks, very
few defenses are known to date. While adversarial training can improve the
empirical robustness of image classifiers, a direct extension to object
detection is very expensive. This work is motivated by recent progress on
certified classification by randomized smoothing. We start by presenting a
reduction from object detection to a regression problem. Then, to enable
certified regression, where standard mean smoothing fails, we propose median
smoothing, which is of independent interest. We obtain the first
model-agnostic, training-free, and certified defense for object detection
against $\ell_2$-bounded attacks. The code for all experiments in the paper is
available at http://github.com/Ping-C/CertifiedObjectDetection .
- Abstract(参考訳): 敵の攻撃に対する物体検知器の脆弱性にもかかわらず、現在知られている防御はごくわずかである。
逆行訓練は画像分類器の実証的堅牢性を向上させることができるが、物体検出への直接的拡張は非常に高価である。
この研究は、ランダム化平滑化による認定分類の最近の進歩に動機づけられている。
まず,対象検出から回帰問題への削減について述べる。
次に,標準平均平滑化が失敗した場合の認定回帰を可能にするために,独立利害関係の中央値平滑化を提案する。
我々は、$\ell_2$-bounded攻撃に対する、最初のモデル非依存、トレーニングフリー、および証明されたオブジェクト検出防御を得る。
論文のすべての実験のコードは http://github.com/Ping-C/CertifiedObjectDetection で公開されている。
関連論文リスト
- FLTracer: Accurate Poisoning Attack Provenance in Federated Learning [38.47921452675418]
Federated Learning(FL)は、複数のクライアントが共同で共有グローバルモデルをトレーニングできる、有望な分散学習アプローチである。
近年の研究では、FLは様々な毒殺攻撃に弱いことが示されており、グローバルモデルの性能を低下させるか、バックドアを導入することができる。
FLTracerは、様々な攻撃を正確に検出し、攻撃時間、目的、タイプ、および更新の有毒な位置を追跡できる最初のFL攻撃フレームワークである。
論文 参考訳(メタデータ) (2023-10-20T11:24:38Z) - FROD: Robust Object Detection for Free [1.8139771201780368]
最先端の物体検出器は、小さな敵の摂動に影響を受けやすい。
対象検出における頑健性を高めるために,分類に基づくバックボーンの変更を提案する。
論文 参考訳(メタデータ) (2023-08-03T17:31:22Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
この研究は、逆の例を探索することで、物体検出器の微調整段階を補強する。
提案手法は,オブジェクト検出ベンチマークにおいて,最先端のEfficientDetsの性能を+1.1mAP向上させる。
論文 参考訳(メタデータ) (2021-03-23T19:45:26Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
敵対的なサポートセットを強調するための検出戦略を提案する。
我々は,特徴保存型オートエンコーダフィルタリングと,この検出を行うサポートセットの自己相似性の概念を利用する。
提案手法は攻撃非依存であり, 最善の知識まで, 数発分類器の検出を探索する最初の方法である。
論文 参考訳(メタデータ) (2020-12-09T14:13:41Z) - Detecting Backdoors in Neural Networks Using Novel Feature-Based Anomaly
Detection [16.010654200489913]
本稿では,ニューラルネットワークのバックドア攻撃に対する新たな防御法を提案する。
バックドアネットワークの機能抽出層が新機能を組み込んでトリガーの存在を検出するという直感に基づいている。
バックドアの検出には、クリーンな検証データに基づいて訓練された2つの相乗的異常検出器を使用する。
論文 参考訳(メタデータ) (2020-11-04T20:33:51Z) - RepPoints V2: Verification Meets Regression for Object Detection [65.120827759348]
本稿ではRepPointsのローカライズ予測に検証タスクを導入する。
RepPoints v2は、オリジナルのRepPointsよりも約2.0mAPの一貫性のある改善を提供する。
提案手法は、インスタンスセグメンテーションのようなアプリケーションと同様に、他のオブジェクト検出フレームワークをより高めることができることを示す。
論文 参考訳(メタデータ) (2020-07-16T17:57:08Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
異常検出に基づくスプーフ攻撃検出は、顔提示攻撃検出の最近の進歩である。
本稿では,異常検出に基づくスプーフ攻撃検出のためのディープラーニングソリューションを提案する。
提案手法はCNNの表現学習能力の恩恵を受け,fPADタスクの優れた特徴を学習する。
論文 参考訳(メタデータ) (2020-07-11T21:20:55Z) - Miss the Point: Targeted Adversarial Attack on Multiple Landmark
Detection [29.83857022733448]
本稿では,CNNをベースとしたモデルが,逆方向の摂動に対する複数のランドマーク検出に与える影響を初めて検討した。
本稿では,複数のランドマーク検出における最先端モデルに対する適応的反復FGSM攻撃を提案する。
論文 参考訳(メタデータ) (2020-07-10T07:58:35Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
地域サンプリングや重み付けは、現代の地域ベースの物体検出器の成功に極めて重要である。
サンプル重み付けはデータ依存でタスク依存であるべきだと我々は主張する。
サンプルのタスク重みを予測するための統一的なサンプル重み付けネットワークを提案する。
論文 参考訳(メタデータ) (2020-06-11T16:19:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。