論文の概要: Test-Time Backdoor Detection for Object Detection Models
- arxiv url: http://arxiv.org/abs/2503.15293v1
- Date: Wed, 19 Mar 2025 15:12:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:23:15.280076
- Title: Test-Time Backdoor Detection for Object Detection Models
- Title(参考訳): 物体検出モデルの試験時間バックドア検出
- Authors: Hangtao Zhang, Yichen Wang, Shihui Yan, Chenyu Zhu, Ziqi Zhou, Linshan Hou, Shengshan Hu, Minghui Li, Yanjun Zhang, Leo Yu Zhang,
- Abstract要約: オブジェクト検出モデルは、バックドア攻撃に対して脆弱である。
TRACE(Transform Consistency Evaluation)は、オブジェクト検出において、テスト時に有毒なサンプルを検出する新しい方法である。
TRACEは、最先端の防御に対するAUROCの30%の改善を示す広範な実験により、ブラックボックス、普遍的なバックドア検出を実現している。
- 参考スコア(独自算出の注目度): 14.69149115853361
- License:
- Abstract: Object detection models are vulnerable to backdoor attacks, where attackers poison a small subset of training samples by embedding a predefined trigger to manipulate prediction. Detecting poisoned samples (i.e., those containing triggers) at test time can prevent backdoor activation. However, unlike image classification tasks, the unique characteristics of object detection -- particularly its output of numerous objects -- pose fresh challenges for backdoor detection. The complex attack effects (e.g., "ghost" object emergence or "vanishing" object) further render current defenses fundamentally inadequate. To this end, we design TRAnsformation Consistency Evaluation (TRACE), a brand-new method for detecting poisoned samples at test time in object detection. Our journey begins with two intriguing observations: (1) poisoned samples exhibit significantly more consistent detection results than clean ones across varied backgrounds. (2) clean samples show higher detection consistency when introduced to different focal information. Based on these phenomena, TRACE applies foreground and background transformations to each test sample, then assesses transformation consistency by calculating the variance in objects confidences. TRACE achieves black-box, universal backdoor detection, with extensive experiments showing a 30% improvement in AUROC over state-of-the-art defenses and resistance to adaptive attacks.
- Abstract(参考訳): オブジェクト検出モデルはバックドア攻撃に対して脆弱で、攻撃者は事前定義されたトリガを埋め込んで予測を操作することで、トレーニングサンプルの小さなサブセットを中毒する。
試験時に有毒なサンプル(トリガーを含むもの)を検出することで、バックドアの活性化を防ぐことができる。
しかし、画像分類タスクとは異なり、オブジェクト検出のユニークな特徴(特に多数のオブジェクトの出力)は、バックドア検出に新たな課題をもたらす。
複雑な攻撃効果(たとえば"ghost"オブジェクトの出現や"vanish"オブジェクト)は、現在の防御を根本的に不十分にします。
そこで我々は,物体検出における試験時間における有毒試料検出の新しい手法であるTRACE(TRACE)を設計した。
1) 有毒な試料は、さまざまな背景にまたがるクリーンな試料よりも、はるかに一貫した検出結果を示す。
2) クリーンサンプルは, 異なる焦点情報に導入した場合, 高い検出一貫性を示す。
これらの現象に基づいて、TRACEは各テストサンプルに前景および背景変換を適用し、オブジェクトの信頼性のばらつきを計算して変換の整合性を評価する。
TRACEは、最先端の防御に対するAUROCの30%の改善と適応攻撃に対する抵抗を示す広範な実験により、ブラックボックス、普遍的なバックドア検出を実現している。
関連論文リスト
- Twin Trigger Generative Networks for Backdoor Attacks against Object Detection [14.578800906364414]
オブジェクト検出器は、現実世界のアプリケーションで広く使われているが、バックドア攻撃に弱い。
バックドア攻撃に関するほとんどの研究は画像分類に焦点を合わせており、物体検出について限定的な研究がなされている。
本研究では,トレーニング中のモデルにバックドアを埋め込むための目に見えないトリガと,推論中の安定したアクティベーションのための目に見えるトリガを生成する新しいツイントリガ生成ネットワークを提案する。
論文 参考訳(メタデータ) (2024-11-23T03:46:45Z) - Model X-ray:Detecting Backdoored Models via Decision Boundary [62.675297418960355]
バックドア攻撃はディープニューラルネットワーク(DNN)に重大な脆弱性をもたらす
図形化された2次元(2次元)決定境界の解析に基づく新しいバックドア検出手法であるモデルX線を提案する。
提案手法は,クリーンサンプルが支配する意思決定領域とラベル分布の集中度に着目した2つの戦略を含む。
論文 参考訳(メタデータ) (2024-02-27T12:42:07Z) - Activation Gradient based Poisoned Sample Detection Against Backdoor Attacks [35.42528584450334]
我々は, アクティベーション・グラディエント・ベース・ポゾンド・サンプル検出 (AGPD) と呼ばれる, 革新的な有毒試料検出手法を開発した。
まず、信頼できないデータセットで訓練されたモデルから、すべてのクラスのGCDを計算する。
そして,対象クラスとクリーンクラス間のGCD分散の違いに基づいて,対象クラス(es)を同定する。
最後に, 汚染された試料とクリーンな試料との明確な分離に基づいて, 同定された標的クラス内の有毒試料をろ過する。
論文 参考訳(メタデータ) (2023-12-11T09:17:33Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Detecting Backdoors During the Inference Stage Based on Corruption
Robustness Consistency [33.42013309686333]
本稿では,被害者モデルのハードラベル出力のみを必要とする試験時間トリガーサンプル検出法を提案する。
私たちの旅は、バックドアに感染したモデルが、クリーンな画像に対して異なる画像の破損に対して同様のパフォーマンスを持つのに、トリガーサンプルに対して不一致に実行するという興味深い観察から始まります。
大規模な実験では、最先端のディフェンスと比較すると、TeCoは異なるバックドア攻撃、データセット、モデルアーキテクチャにおいて、それらよりも優れています。
論文 参考訳(メタデータ) (2023-03-27T07:10:37Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - BadDet: Backdoor Attacks on Object Detection [42.40418007499009]
対象物検出のための4種類のバックドア攻撃を提案する。
トリガーは、ターゲットクラスのオブジェクトを誤って生成することができる。
単一のトリガーは、イメージ内のすべてのオブジェクトの予測をターゲットクラスに変更することができる。
論文 参考訳(メタデータ) (2022-05-28T18:02:11Z) - Detection as Regression: Certified Object Detection by Median Smoothing [50.89591634725045]
この研究は、ランダム化平滑化による認定分類の最近の進歩によって動機付けられている。
我々は、$ell$-bounded攻撃に対するオブジェクト検出のための、最初のモデル非依存、トレーニング不要、認定された防御条件を得る。
論文 参考訳(メタデータ) (2020-07-07T18:40:19Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
地域サンプリングや重み付けは、現代の地域ベースの物体検出器の成功に極めて重要である。
サンプル重み付けはデータ依存でタスク依存であるべきだと我々は主張する。
サンプルのタスク重みを予測するための統一的なサンプル重み付けネットワークを提案する。
論文 参考訳(メタデータ) (2020-06-11T16:19:16Z) - Progressive Object Transfer Detection [84.48927705173494]
本稿では,新しいプログレッシブオブジェクト転送検出(POTD)フレームワークを提案する。
第一に、POTDは様々なドメインの様々なオブジェクトを効果的にプログレッシブな検出手順に活用することができる。
第2に、POTDは2つの微妙な転送段階、すなわち、LSTD(low-Shot Transfer Detection)とWSTD(Weakly Supervised Transfer Detection)から構成される。
論文 参考訳(メタデータ) (2020-02-12T00:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。