Transfer Learning for Electricity Price Forecasting
- URL: http://arxiv.org/abs/2007.03762v3
- Date: Mon, 18 Apr 2022 14:00:38 GMT
- Title: Transfer Learning for Electricity Price Forecasting
- Authors: Salih Gunduz, Umut Ugurlu, and Ilkay Oksuz
- Abstract summary: We propose to use transfer learning as a tool for utilizing information from other electricity price markets for forecasting.
Our experiments on five different day-ahead markets indicate that transfer learning improves the performance of electricity price forecasting in a statistically significant manner.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electricity price forecasting is an essential task for all the deregulated
markets of the world. The accurate prediction of the day-ahead electricity
prices is an active research field and available data from various markets can
be used as an input for forecasting. A collection of models have been proposed
for this task, but the fundamental question on how to use the available big
data is often neglected. In this paper, we propose to use transfer learning as
a tool for utilizing information from other electricity price markets for
forecasting. We pre-train a bidirectional Gated Recurrent Units (BGRU) network
on source markets and finally do a fine-tuning for the target market. Moreover,
we test different ways to use the input data from various markets in the
models. Our experiments on five different day-ahead markets indicate that
transfer learning improves the performance of electricity price forecasting in
a statistically significant manner.
Related papers
- Forecasting Day-Ahead Electricity Prices in the Integrated Single Electricity Market: Addressing Volatility with Comparative Machine Learning Methods [0.552480439325792]
This paper undertakes a comprehensive investigation of electricity price forecasting methods, focused on the Irish Integrated Single Electricity Market.
The primary objective of this research is to evaluate and compare the performance of various forecasting models.
The paper demonstrates that the daily EU Natural Gas price is a more useful feature for electricity price forecasting in Ireland than the daily Henry Hub Natural Gas price.
arXiv Detail & Related papers (2024-08-10T20:43:21Z) - Electricity Price Forecasting in the Irish Balancing Market [0.0]
This work applies to the Irish balancing market a variety of price prediction techniques proven successful in the widely studied day-ahead market.
We compare statistical, machine learning, and deep learning models using a framework that investigates the impact of different training sizes.
An extensive numerical study shows that well-performing models in the day-ahead market do not perform well in the balancing one.
arXiv Detail & Related papers (2024-02-09T15:18:00Z) - Multivariate Scenario Generation of Day-Ahead Electricity Prices using Normalizing Flows [0.0]
We present a probabilistic forecasting approach for day-ahead electricity prices using the fully data-driven deep generative model called normalizing flow.
Our results highlight that the normalizing flow generates high-quality scenarios that reproduce the true price distribution and yield accurate forecasts.
arXiv Detail & Related papers (2023-11-23T14:38:10Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Simulation-based Forecasting for Intraday Power Markets: Modelling
Fundamental Drivers for Location, Shape and Scale of the Price Distribution [0.0]
We propose a modelling strategy for the location, shape and scale parameters of the return distribution in intraday markets.
We consider wind and solar forecasts and their intraday updates, outages, price information and a novel measure for the shape of the merit-order.
We find that the volatility is driven by the merit-order regime, the time to delivery and the closure of cross-border order books.
arXiv Detail & Related papers (2022-11-23T15:08:50Z) - Machine learning applications for electricity market agent-based models:
A systematic literature review [68.8204255655161]
Agent-based simulations are used to better understand the dynamics of the electricity market.
Agent-based models provide the opportunity to integrate machine learning and artificial intelligence.
We review 55 papers published between 2016 and 2021 which focus on machine learning applied to agent-based electricity market models.
arXiv Detail & Related papers (2022-06-05T14:52:26Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the EPEX spot markets in a distinct hourly pattern.
This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts.
arXiv Detail & Related papers (2022-05-27T08:38:20Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
We supply, to the best of our knowledge, the first open source simulation platform, Open SOUrce Market Simulator (OSOUM) to analyze trading markets and specifically data markets.
We describe and implement a specific data market model, consisting of two types of agents: sellers who own various datasets available for acquisition, and buyers searching for relevant and beneficial datasets for purchase.
Although commercial frameworks, intended for handling data markets, already exist, we provide a free and extensive end-to-end research tool for simulating possible behavior for both buyers and sellers participating in (data) markets.
arXiv Detail & Related papers (2021-02-18T09:20:26Z) - Learning the Gap in the Day-Ahead and Real-Time Locational Marginal
Prices in the Electricity Market [0.0]
Machine learning algorithms and deep neural networks are used to predict the values of the price gap between day-ahead and real-time electricity markets.
The proposed methods are evaluated and neural networks showed promising results in predicting the exact values of the gap.
arXiv Detail & Related papers (2020-12-23T16:49:24Z) - Predicting seasonal influenza using supermarket retail records [59.18952050885709]
We consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets.
We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence.
arXiv Detail & Related papers (2020-12-08T16:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.