Uncertainty-Aware Lookahead Factor Models for Quantitative Investing
- URL: http://arxiv.org/abs/2007.04082v2
- Date: Wed, 15 Jul 2020 16:52:16 GMT
- Title: Uncertainty-Aware Lookahead Factor Models for Quantitative Investing
- Authors: Lakshay Chauhan, John Alberg, Zachary C. Lipton
- Abstract summary: We first show through simulation that if we could select stocks via factors calculated on future fundamentals, that our portfolios would far outperform standard factor models.
We propose lookahead factor models which plug these predicted future fundamentals into traditional factors.
In retrospective analysis, we leverage an industry-grade portfolio simulator to show simultaneous improvement in annualized return and Sharpe ratio.
- Score: 25.556824322478935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On a periodic basis, publicly traded companies report fundamentals, financial
data including revenue, earnings, debt, among others. Quantitative finance
research has identified several factors, functions of the reported data that
historically correlate with stock market performance. In this paper, we first
show through simulation that if we could select stocks via factors calculated
on future fundamentals (via oracle), that our portfolios would far outperform
standard factor models. Motivated by this insight, we train deep nets to
forecast future fundamentals from a trailing 5-year history. We propose
lookahead factor models which plug these predicted future fundamentals into
traditional factors. Finally, we incorporate uncertainty estimates from both
neural heteroscedastic regression and a dropout-based heuristic, improving
performance by adjusting our portfolios to avert risk. In retrospective
analysis, we leverage an industry-grade portfolio simulator (backtester) to
show simultaneous improvement in annualized return and Sharpe ratio.
Specifically, the simulated annualized return for the uncertainty-aware model
is 17.7% (vs 14.0% for a standard factor model) and the Sharpe ratio is 0.84
(vs 0.52).
Related papers
- Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - Application of Deep Learning for Factor Timing in Asset Management [21.212548040046133]
More flexible models have better performance in explaining the variance in factor premium of the unseen period.
For flexible models like neural networks, the optimal weights based on their prediction tend to be unstable.
We verify that tilting down the rebalance frequency according to the historical optimal rebalancing scheme can help reduce the transaction costs.
arXiv Detail & Related papers (2024-04-27T21:57:17Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model [1.2891210250935146]
We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network.
It extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices.
We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market.
arXiv Detail & Related papers (2021-04-06T11:09:51Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
Instead of selecting individual assets, we trade Exchange-Traded Funds (ETFs) of market indices to form a portfolio.
We compare our method with a wide range of algorithms with results showing that our model obtains the best performance over the testing period.
arXiv Detail & Related papers (2020-05-27T21:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.