FactorGCL: A Hypergraph-Based Factor Model with Temporal Residual Contrastive Learning for Stock Returns Prediction
- URL: http://arxiv.org/abs/2502.05218v1
- Date: Wed, 05 Feb 2025 12:37:15 GMT
- Title: FactorGCL: A Hypergraph-Based Factor Model with Temporal Residual Contrastive Learning for Stock Returns Prediction
- Authors: Yitong Duan, Weiran Wang, Jian Li,
- Abstract summary: We propose a hypergraph-based factor model with temporal residual contrastive learning (FactorGCL)
To mine hidden factors that supplement human-designed prior factors for predicting stock returns, we design a cascading residual hypergraph architecture.
Our experiments on real stock market data demonstrate that FactorGCL outperforms existing state-of-the-art methods.
- Score: 16.70420232738428
- License:
- Abstract: As a fundamental method in economics and finance, the factor model has been extensively utilized in quantitative investment. In recent years, there has been a paradigm shift from traditional linear models with expert-designed factors to more flexible nonlinear machine learning-based models with data-driven factors, aiming to enhance the effectiveness of these factor models. However, due to the low signal-to-noise ratio in market data, mining effective factors in data-driven models remains challenging. In this work, we propose a hypergraph-based factor model with temporal residual contrastive learning (FactorGCL) that employs a hypergraph structure to better capture high-order nonlinear relationships among stock returns and factors. To mine hidden factors that supplement human-designed prior factors for predicting stock returns, we design a cascading residual hypergraph architecture, in which the hidden factors are extracted from the residual information after removing the influence of prior factors. Additionally, we propose a temporal residual contrastive learning method to guide the extraction of effective and comprehensive hidden factors by contrasting stock-specific residual information over different time periods. Our extensive experiments on real stock market data demonstrate that FactorGCL not only outperforms existing state-of-the-art methods but also mines effective hidden factors for predicting stock returns.
Related papers
- STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading [55.02735046724146]
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing.
We propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM.
Storm extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings.
arXiv Detail & Related papers (2024-12-12T17:15:49Z) - NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities [0.0]
We introduce NeuralFactors, a novel machine-learning based approach to factor analysis where a neural network outputs factor exposures and factor returns.
We show that this model outperforms prior approaches in terms of log-likelihood performance and computational efficiency.
arXiv Detail & Related papers (2024-08-02T18:01:09Z) - Application of Deep Learning for Factor Timing in Asset Management [21.212548040046133]
More flexible models have better performance in explaining the variance in factor premium of the unseen period.
For flexible models like neural networks, the optimal weights based on their prediction tend to be unstable.
We verify that tilting down the rebalance frequency according to the historical optimal rebalancing scheme can help reduce the transaction costs.
arXiv Detail & Related papers (2024-04-27T21:57:17Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Deep Partial Least Squares for Empirical Asset Pricing [0.4511923587827302]
We use deep partial least squares (DPLS) to estimate an asset pricing model for individual stock returns.
The novel contribution is to resolve the nonlinear factor structure, thus advancing the current paradigm of deep learning in empirical asset pricing.
arXiv Detail & Related papers (2022-06-20T21:30:39Z) - Stock Index Prediction using Cointegration test and Quantile Loss [0.0]
We propose a method that can get better performance in terms of returns when selecting informative factors.
We compare the two RNN variants with quantile loss with only five factors obtained through the cointegration test.
Our experimental results show that our proposed method outperforms the other conventional approaches.
arXiv Detail & Related papers (2021-09-29T16:20:29Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.