Integration of topological insulator Josephson junctions in
superconducting qubit circuits
- URL: http://arxiv.org/abs/2007.04224v2
- Date: Sat, 18 Sep 2021 18:47:52 GMT
- Title: Integration of topological insulator Josephson junctions in
superconducting qubit circuits
- Authors: Tobias W. Schmitt, Malcolm R. Connolly, Michael Schleenvoigt, Chenlu
Liu, Oscar Kennedy, Jos\'e M. Ch\'avez-Garcia, Abdur R. Jalil, Benjamin
Bennemann, Stefan Trellenkamp, Florian Lentz, Elmar Neumann, Tobias
Lindstr\"om, Sebastian E. de Graaf, Erwin Berenschot, Niels Tas, Gregor
Mussler, Karl D. Petersson, Detlev Gr\"utzmacher and Peter Sch\"uffelgen
- Abstract summary: We report on the realization of superconducting transmon qubits implemented with semiconductor Josephson junctions (JJs)
Microwave losses on our substrates with monolithically integrated hardmask, used for selective area growth of TI nanostructures, imply microsecond limits to relaxation times.
Our results pave the way for advanced investigations of topological materials in both novel Josephson and topological qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of semiconductor Josephson junctions (JJs) in superconducting
quantum circuits provides a versatile platform for hybrid qubits and offers a
powerful way to probe exotic quasiparticle excitations. Recent proposals for
using circuit quantum electrodynamics (cQED) to detect topological
superconductivity motivate the integration of novel topological materials in
such circuits. Here, we report on the realization of superconducting transmon
qubits implemented with $(Bi_{0.06}Sb_{0.94})_{2}Te_{3}$ topological insulator
(TI) JJs using ultra-high vacuum fabrication techniques. Microwave losses on
our substrates with monolithically integrated hardmask, used for selective area
growth of TI nanostructures, imply microsecond limits to relaxation times and
thus their compatibility with strong-coupling cQED. We use the cavity-qubit
interaction to show that the Josephson energy of TI-based transmons scales with
their JJ dimensions and demonstrate qubit control as well as temporal quantum
coherence. Our results pave the way for advanced investigations of topological
materials in both novel Josephson and topological qubits.
Related papers
- Gate-tunable phase transition in a bosonic Su-Schrieffer-Heeger chain [9.290206579136372]
Su-Schrieffer-Heeger model has gained prominence due to its simplicity and practical applications.
We present the implementation of a gate-tunable, five-unit-cell bosonic SSH chain on a one-dimensional lattice of superconducting resonators.
In contrast to prior work, our approach offers precise and independent in-situ tuning of the coupling parameters.
arXiv Detail & Related papers (2024-04-10T22:03:32Z) - Quantum dynamics of superconductor-quantum dot-superconductor Josephson
junctions [0.0]
We study the self-consistent quantization of a capacitively-shunted S-QD-S junction via path-integral formulation.
Results are important to understand future experiments and quantum devices incorporating S-QD-S junctions in arbitrary impedance environments.
arXiv Detail & Related papers (2024-02-15T21:14:59Z) - Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Topological Josephson Junctions in the Integer Quantum Hall Regime [42.408991654684876]
tunable Josephson junctions (TJJs) are desirable platforms for investigating the anomalous Josephson effect and topological quantum insulator applications.
We propose a robust and electrostatically tunable TJJ by combining the physics of the integer quantum Hall (IQH) regime and of superconductors.
They are of particular relevance towards scalable and robust Andreev-qubit platforms, and also for efficient phase batteries.
arXiv Detail & Related papers (2022-11-04T16:45:07Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - A flux tunable superconducting quantum circuit based on Weyl semimetal
MoTe2 [0.0]
We present a transmon-like superconducting quantum intereference device (SQUID)
SQUID consists of junctions made of Weyl semimetal Td-MoTe2 and superconducting leads niobium nitride (NbN)
We demonstrate a JJ made of MoTe2 and a flux-tunable transmon-like circuit based on Weyl materials.
arXiv Detail & Related papers (2020-10-27T07:24:39Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.