A flux tunable superconducting quantum circuit based on Weyl semimetal
MoTe2
- URL: http://arxiv.org/abs/2010.14107v1
- Date: Tue, 27 Oct 2020 07:24:39 GMT
- Title: A flux tunable superconducting quantum circuit based on Weyl semimetal
MoTe2
- Authors: K. L. Chiu, D. G. Qian, J. W. Qiu, W. Y. Liu, D. Tan, V. Mosallanejad,
S. Liu, Z. T. Zhang, Y. Zhao, D. P. Yu
- Abstract summary: We present a transmon-like superconducting quantum intereference device (SQUID)
SQUID consists of junctions made of Weyl semimetal Td-MoTe2 and superconducting leads niobium nitride (NbN)
We demonstrate a JJ made of MoTe2 and a flux-tunable transmon-like circuit based on Weyl materials.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weyl semimetals for their exotic topological properties have drawn
considerable attention in many research fields. When in combination with s-wave
superconductors, the supercurrent can be carried by their topological surface
channels, forming junctions mimic the behavior of Majorana bound states. Here,
we present a transmon-like superconducting quantum intereference device (SQUID)
consists of lateral junctions made of Weyl semimetal Td-MoTe2 and
superconducting leads niobium nitride (NbN). The SQUID is coupled to a readout
cavity made of molybdenum rhenium (MoRe), whose response at high power reveal
the existence of the constituting Josephson junctions (JJs). The loop geometry
of the circuit allows the resonant frequency of the readout cavity to be tuned
by the magnetic flux. We demonstrate a JJ made of MoTe2 and a flux-tunable
transmon-like circuit based on Weyl materials. Our study provides a platform to
utilize topological materials in SQUID-based quantum circuits for potential
applications in quantum information processing.
Related papers
- Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Quantum dynamics of superconductor-quantum dot-superconductor Josephson
junctions [0.0]
We study the self-consistent quantization of a capacitively-shunted S-QD-S junction via path-integral formulation.
Results are important to understand future experiments and quantum devices incorporating S-QD-S junctions in arbitrary impedance environments.
arXiv Detail & Related papers (2024-02-15T21:14:59Z) - Chiral SQUID-metamaterial waveguide for circuit-QED [6.218498009194957]
We propose a method to engineer 1D Josephson microwave waveguide as a chiral metamaterial.
We analyze both Markovian and non-Markovian quantum dynamics, and find that superconducting qubits can dissipate photons unidirectionally.
Our work might open the possibilities to exploit SQUID metamaterials realizing unidirectional photon transport in circuit-QED platforms.
arXiv Detail & Related papers (2022-06-14T03:45:41Z) - Singlet-doublet transitions of a quantum dot Josephson junction detected
in a transmon circuit [2.610856432667959]
Microwave spectroscopy of the transmon's transition spectrum allows us to probe the ground state parity of the quantum dot.
Our results can facilitate the realization of semiconductor-based $0-pi$ qubits and Andreev qubits.
arXiv Detail & Related papers (2022-02-25T15:20:55Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Epitaxial Superconductor-Semiconductor Two-Dimensional Systems for
Superconducting Quantum Circuits [0.0]
Materials innovation and design breakthroughs have increased functionality and coherence of qubits substantially over the past two decades.
We show by improving interface between InAs as a semiconductor and Al as a superconductor, one can reliably fabricate voltage-controlled Josephson junction field effect transistor (JJ-FET)
We present the anharmonicity and coupling strengths from one and two-photon absorption in a quantum two level system fabricated with a JJ-FET.
arXiv Detail & Related papers (2021-03-26T19:09:59Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Integration of topological insulator Josephson junctions in
superconducting qubit circuits [0.0]
We report on the realization of superconducting transmon qubits implemented with semiconductor Josephson junctions (JJs)
Microwave losses on our substrates with monolithically integrated hardmask, used for selective area growth of TI nanostructures, imply microsecond limits to relaxation times.
Our results pave the way for advanced investigations of topological materials in both novel Josephson and topological qubits.
arXiv Detail & Related papers (2020-07-08T16:05:13Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.