論文の概要: Predicting the Accuracy of a Few-Shot Classifier
- arxiv url: http://arxiv.org/abs/2007.04238v1
- Date: Wed, 8 Jul 2020 16:31:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 09:42:50.582801
- Title: Predicting the Accuracy of a Few-Shot Classifier
- Title(参考訳): Few-Shot分類器の精度予測
- Authors: Myriam Bontonou, Louis B\'ethune, Vincent Gripon
- Abstract要約: まず,一般化性能の変動要因を解析する。
我々は,検討された分類器の一般化能力と実証的に相関する合理的な尺度を提案する。
- 参考スコア(独自算出の注目度): 3.609538870261841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of few-shot learning, one cannot measure the generalization
ability of a trained classifier using validation sets, due to the small number
of labeled samples. In this paper, we are interested in finding alternatives to
answer the question: is my classifier generalizing well to previously unseen
data? We first analyze the reasons for the variability of generalization
performances. We then investigate the case of using transfer-based solutions,
and consider three settings: i) supervised where we only have access to a few
labeled samples, ii) semi-supervised where we have access to both a few labeled
samples and a set of unlabeled samples and iii) unsupervised where we only have
access to unlabeled samples. For each setting, we propose reasonable measures
that we empirically demonstrate to be correlated with the generalization
ability of considered classifiers. We also show that these simple measures can
be used to predict generalization up to a certain confidence. We conduct our
experiments on standard few-shot vision datasets.
- Abstract(参考訳): 少数ショット学習の文脈では、ラベル付きサンプルの少ないため、検証セットを用いて訓練された分類器の一般化能力を測定することはできない。
本稿では,これまで見つからなかったデータに対して,私の分類器は十分に一般化されているか?
まず,一般化性能の変動要因を分析した。
次に、転送ベースのソリューションの使用事例を調査し、3つの設定を検討する。
一 数個のラベル付きサンプルしかアクセスできない場所を監督すること。
二 数個のラベル付きサンプルとラベルなしサンプルのセットの両方にアクセスすることができる半監督
iii) ラベルなしのサンプルしかアクセスできない場所を監督していないこと。
各設定に対して,検討された分類器の一般化能力と実証的に相関する合理的な尺度を提案する。
また,この単純な尺度を用いて,信頼度の高い一般化を予測できることを示した。
標準的な数ショットビジョンデータセットで実験を行います。
関連論文リスト
- Liberating Seen Classes: Boosting Few-Shot and Zero-Shot Text Classification via Anchor Generation and Classification Reframing [38.84431954053434]
短いショットとゼロショットのテキスト分類は、ラベル付きサンプルやラベル付きサンプルが全くない新しいクラスからのサンプルを認識することを目的としている。
少数ショットとゼロショットのテキスト分類のためのシンプルで効果的な戦略を提案する。
論文 参考訳(メタデータ) (2024-05-06T15:38:32Z) - Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
一般カテゴリー発見(GCD)は、半教師付き学習のより現実的で挑戦的な設定に対処することを目的としている。
メモリ一貫性を誘導する分枝・分枝学習フレームワーク(MCDL)を提案する。
本手法は,画像認識の目に見えるクラスと見えないクラスの両方において,最先端のモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-24T09:39:45Z) - Probabilistic Test-Time Generalization by Variational Neighbor-Labeling [62.158807685159736]
本稿では、ドメインの一般化を試み、モデルが未確認のターゲットドメインにデプロイされる前に、ソースドメインにのみトレーニングされる。
ソーストレーニングされたモデルをテスト時にターゲットドメインに一般化するための、ターゲットサンプルの擬似ラベル化の確率。
より堅牢な擬似ラベルを生成するために、近隣のターゲットサンプルの情報を含む変分隣接ラベル。
論文 参考訳(メタデータ) (2023-07-08T18:58:08Z) - A Universal Unbiased Method for Classification from Aggregate
Observations [115.20235020903992]
本稿では,任意の損失に対する分類リスクを非バイアスで推定するCFAOの普遍的手法を提案する。
提案手法は,非バイアスリスク推定器によるリスクの整合性を保証するだけでなく,任意の損失に対応できる。
論文 参考訳(メタデータ) (2023-06-20T07:22:01Z) - Positive Unlabeled Contrastive Learning [14.975173394072053]
自己教師型事前学習パラダイムを古典的正の未ラベル(PU)設定に拡張する。
PU固有のクラスタリング手法を用いて,ラベルのないサンプルを擬似ラベル付けする手法を開発した。
提案手法は,いくつかの標準PUベンチマークデータセットに対して,最先端のPU手法を手作業で上回っている。
論文 参考訳(メタデータ) (2022-06-01T20:16:32Z) - Are Fewer Labels Possible for Few-shot Learning? [81.89996465197392]
ごく限られたデータとラベルのため、わずかなショット学習は難しい。
近年のBiT (Big Transfer) 研究は、異なる領域における大規模ラベル付きデータセットの事前トレーニングによって、少数ショット学習が大きな恩恵を受けることを示した。
本稿では,ファインチューニングにおけるクラスタリングと固有サンプルの共進化を活かし,ショット学習の削減を図る。
論文 参考訳(メタデータ) (2020-12-10T18:59:29Z) - Identifying Wrongly Predicted Samples: A Method for Active Learning [6.976600214375139]
本稿では,不確実性を超えた単純なサンプル選択基準を提案する。
予測されたサンプルを正しく識別するために、最先端の結果とより良いレートを示す。
論文 参考訳(メタデータ) (2020-10-14T09:00:42Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - One-bit Supervision for Image Classification [121.87598671087494]
1ビットの監視は、不完全なアノテーションから学ぶための新しい設定である。
負ラベル抑圧を既成の半教師付き学習アルゴリズムに組み込んだ多段階学習パラダイムを提案する。
論文 参考訳(メタデータ) (2020-09-14T03:06:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。