論文の概要: Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery
- arxiv url: http://arxiv.org/abs/2401.13325v2
- Date: Thu, 1 Feb 2024 03:38:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 18:14:15.333325
- Title: Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery
- Title(参考訳): 一般化カテゴリー探索のためのメモリ一貫性誘導二分学習
- Authors: Yuanpeng Tu, Zhun Zhong, Yuxi Li, Hengshuang Zhao
- Abstract要約: 一般カテゴリー発見(GCD)は、半教師付き学習のより現実的で挑戦的な設定に対処することを目的としている。
メモリ一貫性を誘導する分枝・分枝学習フレームワーク(MCDL)を提案する。
本手法は,画像認識の目に見えるクラスと見えないクラスの両方において,最先端のモデルよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 56.172872410834664
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generalized category discovery (GCD) aims at addressing a more realistic and
challenging setting of semi-supervised learning, where only part of the
category labels are assigned to certain training samples. Previous methods
generally employ naive contrastive learning or unsupervised clustering scheme
for all the samples. Nevertheless, they usually ignore the inherent critical
information within the historical predictions of the model being trained.
Specifically, we empirically reveal that a significant number of salient
unlabeled samples yield consistent historical predictions corresponding to
their ground truth category. From this observation, we propose a Memory
Consistency guided Divide-and-conquer Learning framework (MCDL). In this
framework, we introduce two memory banks to record historical prediction of
unlabeled data, which are exploited to measure the credibility of each sample
in terms of its prediction consistency. With the guidance of credibility, we
can design a divide-and-conquer learning strategy to fully utilize the
discriminative information of unlabeled data while alleviating the negative
influence of noisy labels. Extensive experimental results on multiple
benchmarks demonstrate the generality and superiority of our method, where our
method outperforms state-of-the-art models by a large margin on both seen and
unseen classes of the generic image recognition and challenging semantic shift
settings (i.e.,with +8.4% gain on CUB and +8.1% on Standford Cars).
- Abstract(参考訳): 一般カテゴリー発見(GCD)は、特定のトレーニングサンプルにカテゴリラベルの一部だけが割り当てられる半教師付き学習の現実的で挑戦的な設定に対処することを目的としている。
従来の手法では、すべてのサンプルに対して、ナイーブなコントラスト学習または教師なしクラスタリングスキームを用いるのが一般的である。
それでも、訓練中のモデルの歴史的予測における固有の臨界情報を無視しているのが普通である。
具体的には、かなりの数の有意な未ラベル標本が、それらの基礎的真理カテゴリに対応する一貫性のある歴史的予測をもたらすことを実証的に明らかにする。
そこで本研究では,メモリ一貫性をガイドするDivide-and-Conquer Learning framework (MCDL)を提案する。
本フレームワークでは,2つのメモリバンクを用いてラベルなしデータの履歴予測を行い,その予測整合性の観点から各サンプルの信頼性を計測する。
信頼性の指導により、ノイズラベルの悪影響を緩和しつつ、ラベルなしデータの識別情報を十分に活用するための分割学習戦略を設計できる。
複数のベンチマークにおける広範囲な実験結果から,本手法は,一般的な画像認識と意味的シフト(cubでは+8.4%,スタンドフォード車では+8.1%)のクラスにおいて,最先端モデルよりも大きなマージンで性能が向上することを示した。
関連論文リスト
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
知識蒸留(PCKD)のための新しい予見型カテゴリーコントラスト学習法を提案する。
まず、インスタンスレベルの特徴対応と、インスタンスの特徴とカテゴリ中心の関係の両方の構造的知識を蒸留する。
カテゴリ表現を明示的に最適化し、インスタンスとカテゴリの表現を明確に関連付けることができる。
論文 参考訳(メタデータ) (2024-10-18T03:31:00Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
本稿では,ラベルの修正を伴わずに,混乱したサンプルを積極的に使用することを提案する。
仮想カテゴリー(VC)は、モデルの最適化に安全に貢献できるように、各混乱したサンプルに割り当てられる。
私たちの興味深い発見は、密集した視覚タスクにおけるVC学習の利用に注目しています。
論文 参考訳(メタデータ) (2023-12-02T16:23:52Z) - Towards Distribution-Agnostic Generalized Category Discovery [51.52673017664908]
データ不均衡とオープンエンドの分布は、現実の視覚世界の本質的な特性である。
我々は,BaCon(Self-Balanced Co-Advice contrastive framework)を提案する。
BaConは、対照的な学習ブランチと擬似ラベルブランチで構成され、DA-GCDタスクを解決するためのインタラクティブな監視を提供するために協力して動作する。
論文 参考訳(メタデータ) (2023-10-02T17:39:58Z) - Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning [44.91863420044712]
オープンワールドの半教師付き学習において、機械学習モデルはラベルなしのデータから新しいカテゴリを明らかにすることを任務とする。
本稿では,(1)モデル偏差を軽減するためにクラス固有の負のマージンを課するアダプティブ・コミュニケート・ラミナル・ロス,(2)モデルによって予測される擬似ラベルを利用した擬似ラベル・コントラッシブ・クラスタリングについて紹介する。
本手法は,授業の学習速度のバランスを保ち,画像Netデータセットの平均精度を3%向上させる。
論文 参考訳(メタデータ) (2023-09-21T09:44:39Z) - A Universal Unbiased Method for Classification from Aggregate
Observations [115.20235020903992]
本稿では,任意の損失に対する分類リスクを非バイアスで推定するCFAOの普遍的手法を提案する。
提案手法は,非バイアスリスク推定器によるリスクの整合性を保証するだけでなく,任意の損失に対応できる。
論文 参考訳(メタデータ) (2023-06-20T07:22:01Z) - Self-Training: A Survey [5.772546394254112]
半教師付きアルゴリズムは、ラベル付き観測の小さなセットとラベルなし観測の大きなセットから予測関数を学習することを目的としている。
近年,自己学習手法が注目されていることは確かである。
本稿では,バイナリクラスとマルチクラス分類のための自己学習手法と,その変種と関連する2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-24T11:40:44Z) - SemiFed: Semi-supervised Federated Learning with Consistency and
Pseudo-Labeling [14.737638416823772]
フェデレートラーニングは、携帯電話や組織などの複数のクライアントが共同で、予測のための共有モデルを学ぶことを可能にする。
本研究では、各クライアントのデータサンプルを部分的にラベル付けするクロスサイロ・フェデレーション学習の新しいシナリオに焦点を当てる。
そこで我々は,半教師付き学習において,一貫性の正規化と擬似ラベル付けという2つの主要なアプローチを統一する,SemiFedと呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-21T01:14:27Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
我々は,クラスタリング性能に重要な識別表現を学習するために,Neighborhood Contrastive Learningという新しいフレームワークを構築した。
これらの2つの成分がクラスタリング性能に大きく寄与し、我々のモデルが最先端の手法よりも大きなマージンで優れていることを実験的に実証した。
論文 参考訳(メタデータ) (2021-06-20T17:34:55Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
少ないショットラーニングは、テスト時に少数のサンプルしか持たない、新しいカテゴリに迅速に適応することを目的としている。
本稿では,より困難なシナリオ,すなわちクロスグラニュラリティ・グラニュラリティ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラ
画像埋め込みの類似性に応じて,各粗いクラスを擬似微細クラスにグリーディクラスタリングすることで,詳細なデータ分布を近似する。
論文 参考訳(メタデータ) (2020-07-11T03:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。