論文の概要: Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions
- arxiv url: http://arxiv.org/abs/2007.04275v2
- Date: Thu, 9 Jul 2020 13:03:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 10:09:19.584710
- Title: Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions
- Title(参考訳): 基板特異的有機反応条件予測のためのグラフニューラルネットワーク
- Authors: Serim Ryou, Michael R. Maser, Alexander Y. Cui, Travis J. DeLano,
Yisong Yue, Sarah E. Reisman
- Abstract要約: 有機化学反応をモデル化するために,グラフニューラルネットワーク(GNN)を用いた系統的研究を行った。
実験試薬と条件の識別に関わる分類タスクに対して、7つの異なるGNNアーキテクチャを評価した。
- 参考スコア(独自算出の注目度): 79.45090959869124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a systematic investigation using graph neural networks (GNNs) to
model organic chemical reactions. To do so, we prepared a dataset collection of
four ubiquitous reactions from the organic chemistry literature. We evaluate
seven different GNN architectures for classification tasks pertaining to the
identification of experimental reagents and conditions. We find that models are
able to identify specific graph features that affect reaction conditions and
lead to accurate predictions. The results herein show great promise in
advancing molecular machine learning.
- Abstract(参考訳): 有機化学反応をモデル化するためにグラフニューラルネットワーク(GNN)を用いた系統的研究を行った。
そこで,有機化学文献から得られた4つのユビキタス反応のデータセットを作成した。
実験試薬と条件の識別に関わる分類タスクに対して、7つの異なるGNNアーキテクチャを評価した。
モデルは反応条件に影響を及ぼし正確な予測につながる特定のグラフの特徴を特定できる。
その結果、分子機械学習の進歩に大きな期待が持たれている。
関連論文リスト
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
本稿では,様々な有機反応関連タスクに適した新しい化学反応表現学習モデルであるモデルネームを紹介する。
反応物質と生成物との原子対応を統合することにより、反応中に生じる分子変換を識別し、反応機構の理解を深める。
反応条件を化学反応表現に組み込むアダプタ構造を設計し、様々な反応条件を処理し、様々なデータセットや下流タスク、例えば反応性能予測に適応できるようにした。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - Do Graph Neural Networks Work for High Entropy Alloys? [12.002942104379986]
高エントロピー合金(HEA)は化学的な長距離秩序を欠き、現在のグラフ表現の適用性を制限する。
本稿では,HEA特性予測のための正確かつ解釈可能なGNNであるLESets機械学習モデルを紹介する。
第四紀HEAの力学特性のモデル化におけるLESetsの精度を実証する。
論文 参考訳(メタデータ) (2024-08-29T08:20:02Z) - AI-driven Hypergraph Network of Organic Chemistry: Network Statistics
and Applications in Reaction Classification [0.0]
我々は、標準の反応データセットを使用してハイパーネットワークを構築し、その統計を報告する。
また、反応の等価なグラフ表現に対して各統計量を計算し、平行線を描画し、相違点を強調する。
ハイパーネットワーク表現は柔軟性があり、反応コンテキストを保持し、隠れた洞察を明らかにする。
論文 参考訳(メタデータ) (2022-08-02T14:12:03Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Rxn Hypergraph: a Hypergraph Attention Model for Chemical Reaction
Representation [70.97737157902947]
現在、化学反応を強固に表現するための普遍的で広く採用されている方法は存在しない。
ここでは、グラフに基づく分子構造の表現を利用して、ハイパーグラフアテンションニューラルネットワークアプローチを開発し、テストする。
我々はこのハイパーグラフ表現を3つの独立な化学反応データセットを用いて3つの実験で評価した。
論文 参考訳(メタデータ) (2022-01-02T12:33:10Z) - Uncovering the Folding Landscape of RNA Secondary Structure with Deep
Graph Embeddings [71.20283285671461]
このようなグラフ埋め込みを学習するための幾何散乱オートエンコーダ(GSAE)ネットワークを提案する。
我々の埋め込みネットワークは、最近提案された幾何散乱変換を用いて、まずリッチグラフ特徴を抽出する。
GSAEは、構造とエネルギーの両方でRNAグラフを整理し、ビスタブルRNA構造を正確に反映していることを示す。
論文 参考訳(メタデータ) (2020-06-12T00:17:59Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
コンピュータ支援のレトロシンセシスは、化学と計算機科学の双方から新たな関心を集めている。
本稿では,グラフニューラルネットワーク上に構築された条件付きグラフィカルモデルであるConditional Graph Logic Networkを用いて,この課題に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-06T05:36:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。