論文の概要: Tweets Sentiment Analysis via Word Embeddings and Machine Learning
Techniques
- arxiv url: http://arxiv.org/abs/2007.04303v1
- Date: Sun, 5 Jul 2020 08:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 08:11:42.601991
- Title: Tweets Sentiment Analysis via Word Embeddings and Machine Learning
Techniques
- Title(参考訳): ツイートの感情分析 : 単語埋め込みと機械学習による分析
- Authors: Aditya Sharma, Alex Daniels
- Abstract要約: 本論文では、感情分類のための特徴選択モデルWord2vecと機械学習アルゴリズムランダムフォレストを用いて、リアルタイムの2019年選挙Twitterデータに対する感情分析を行うことを目的とする。
Word2vecはテキスト中の単語の文脈意味を考慮し、特徴の質を改善し、機械学習と感情分析の精度を向上させる。
- 参考スコア(独自算出の注目度): 1.345251051985899
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Sentiment analysis of social media data consists of attitudes, assessments,
and emotions which can be considered a way human think. Understanding and
classifying the large collection of documents into positive and negative
aspects are a very difficult task. Social networks such as Twitter, Facebook,
and Instagram provide a platform in order to gather information about peoples
sentiments and opinions. Considering the fact that people spend hours daily on
social media and share their opinion on various different topics helps us
analyze sentiments better. More and more companies are using social media tools
to provide various services and interact with customers. Sentiment Analysis
(SA) classifies the polarity of given tweets to positive and negative tweets in
order to understand the sentiments of the public. This paper aims to perform
sentiment analysis of real-time 2019 election twitter data using the feature
selection model word2vec and the machine learning algorithm random forest for
sentiment classification. Word2vec with Random Forest improves the accuracy of
sentiment analysis significantly compared to traditional methods such as BOW
and TF-IDF. Word2vec improves the quality of features by considering contextual
semantics of words in a text hence improving the accuracy of machine learning
and sentiment analysis.
- Abstract(参考訳): ソーシャルメディアデータの感情分析は、人間の考え方として考えられる態度、評価、感情から成り立っている。
大量のドキュメントを肯定的な側面と否定的な側面に分類することは非常に難しい作業です。
Twitter、Facebook、Instagramなどのソーシャルネットワークは、人々の感情や意見に関する情報を集めるためのプラットフォームを提供する。
ソーシャルメディアで毎日何時間も過ごし、さまざまなトピックについて意見を共有しているという事実を考えると、感情をよりよく分析するのに役立つ。
ソーシャルメディアツールを使ってさまざまなサービスを提供し、顧客と対話する企業が増えている。
感性分析(SA)は、与えられたツイートの極性を肯定的および否定的なツイートに分類し、大衆の感情を理解する。
本稿では,感情分類のための特徴選択モデル word2vec と機械学習アルゴリズムランダムフォレストを用いて,2019年大統領選のリアルタイムtwitter データの感情分析を行う。
word2vec with random forest は bow や tf-idf のような従来の方法に比べて感情分析の精度が大幅に向上する。
Word2vecはテキスト中の単語の文脈意味を考慮し、特徴の質を改善し、機械学習と感情分析の精度を向上させる。
関連論文リスト
- A Comprehensive Review on Sentiment Analysis: Tasks, Approaches and
Applications [0.2717221198324361]
感性分析(SA)はテキストマイニングにおける新たな分野である。
これは、異なるソーシャルメディアプラットフォーム上でテキストで表現された意見を計算的に識別し、分類するプロセスである。
論文 参考訳(メタデータ) (2023-11-19T06:29:41Z) - Exploring Embeddings for Measuring Text Relatedness: Unveiling
Sentiments and Relationships in Online Comments [1.7230140898679147]
本稿では,様々なソーシャルメディアプラットフォームにおけるコメント間の感情的・意味的関係について検討する。
単語の埋め込みを使って文や文書のコンポーネントを分析する。
我々の分析は、オンラインコメントの相互接続性をより深く理解し、大きな相互接続脳として機能するインターネットの概念を調査する。
論文 参考訳(メタデータ) (2023-09-15T04:57:23Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - Leveraging ChatGPT As Text Annotation Tool For Sentiment Analysis [6.596002578395151]
ChatGPTはOpenAIの新製品で、最も人気のあるAI製品として登場した。
本研究では、さまざまな感情分析タスクのためのデータラベリングツールとしてのChatGPTについて検討する。
論文 参考訳(メタデータ) (2023-06-18T12:20:42Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - BERT-Deep CNN: State-of-the-Art for Sentiment Analysis of COVID-19
Tweets [0.7850663096185592]
新型コロナウイルスのパンデミックは、ソーシャルメディアプラットフォーム上で議論されている出来事の1つだ。
パンデミックの状況では、ソーシャルメディアのテキストを分析して感情的傾向を明らかにすることが非常に有用である。
我々は、最先端のBERTモデルとDeep CNNモデルを用いて、ソーシャルメディアを通じて、新型コロナウイルスのパンデミックに対する社会の認識を研究する。
論文 参考訳(メタデータ) (2022-11-04T14:35:56Z) - Accurate Emotion Strength Assessment for Seen and Unseen Speech Based on
Data-Driven Deep Learning [70.30713251031052]
本研究では,データ駆動型深層学習モデル,すなわちSenseNetを提案する。
実験の結果,提案した強度ネットの予測感情強度は,目視と目視の両方の真理値と高い相関性を示した。
論文 参考訳(メタデータ) (2022-06-15T01:25:32Z) - A Study on Herd Behavior Using Sentiment Analysis in Online Social
Network [1.5673338088641469]
本稿では,オンラインソーシャルネットワーキングサイトからの批判的意見を予測するための多様な戦略の能力について述べる。
ソーシャルメディアはここ数十年で良いメディアとなり、世界中の意見を共有している。
本研究では,ソーシャルメディアコンテンツを用いた感情分析手法の評価を行った。
論文 参考訳(メタデータ) (2021-07-25T05:22:35Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis [69.80296394461149]
本稿では,複数の感情分析タスクに対する統一的な感情表現を学習するために,感覚知識強化事前学習(SKEP)を導入する。
自動的な知識の助けを借りて、SKEPは感情マスキングを行い、3つの感情知識予測目標を構築する。
3種類の感情タスクの実験では、SKEPはトレーニング前ベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2020-05-12T09:23:32Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。