Observing Quasiparticles through the Entanglement Lens
- URL: http://arxiv.org/abs/2007.04318v1
- Date: Wed, 8 Jul 2020 18:00:00 GMT
- Title: Observing Quasiparticles through the Entanglement Lens
- Authors: Yizhi You, Elisabeth Wybo, Frank Pollmann, S. L. Sondhi
- Abstract summary: We argue that the salient features of the quasiparticles, including their quantum numbers, locality and fractionalization are reflected in the entanglement spectrum and in the mutual information.
We illustrate these ideas in the specific context of the $d=1$ transverse field Ising model with an integrability breaking perturbation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The low energy physics of interacting quantum systems is typically understood
through the identification of the relevant quasiparticles or low energy
excitations and their quantum numbers. We present a quantum information
framework that goes beyond this to examine the nature of the entanglement in
the corresponding quantum states. We argue that the salient features of the
quasiparticles, including their quantum numbers, locality and fractionalization
are reflected in the entanglement spectrum and in the mutual information. We
illustrate these ideas in the specific context of the $d=1$ transverse field
Ising model with an integrability breaking perturbation.
Related papers
- Hyperfine Structure of Quantum Entanglement [8.203995433574182]
We introduce the textithyperfine structure of entanglement, which dissects entanglement contours known as the fine structure into particle-number cumulants.
Our findings suggest experimental accessibility, offering fresh insights into quantum entanglement across physical systems.
arXiv Detail & Related papers (2023-11-03T15:49:56Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - The singularities of the rate function of quantum coherent work in
one-dimensional transverse field Ising model [0.0]
We specialize our discussions to the one-dimensional transverse field quantum Ising model in the coherent Gibbs state.
We find that quantum coherence not only recovers the quantum phase transition destroyed by thermal fluctuations.
It can be manifested that these singularities are rooted in spin flips causing the sudden change of the domain boundaries of spin polarization.
arXiv Detail & Related papers (2023-03-15T03:17:23Z) - General framework of quantum complementarity from a measurement-based
perspective [6.073419957391949]
We develop a framework for demonstrating quantum complementarity in the form of information exclusion relations.
We explore the applications of our theory in entanglement witnessing and elucidate that our IERs lead to an extended form of entropic uncertainty relations.
arXiv Detail & Related papers (2022-10-03T14:20:52Z) - Completing the quantum ontology with the electromagnetic zero-point
field [0.0]
This text begins with a series of critical considerations on the initial interpretation of quantum phenomena observed in atomic systems.
Arguments are given in favour of the random zero-point radiation field (ZPF) as the element needed to complete the quantum process.
The permanent presence of the field drastically affects the dynamics of the particle, which eventually falls under the control of the field.
arXiv Detail & Related papers (2022-07-13T23:11:48Z) - Quantum coherence with incomplete set of pointers and corresponding
wave-particle duality [0.0]
Quantum coherence quantifies the amount of superposition in a quantum system.
We develop the corresponding resource theory, identifying the free states and operations.
We obtain a complementarity relation between the so-defined quantum coherence and the which-path information in an interferometric set-up.
arXiv Detail & Related papers (2021-08-12T16:55:40Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.