Quantifying the particle aspect of quantum systems
- URL: http://arxiv.org/abs/1812.08656v4
- Date: Wed, 22 Jan 2025 17:55:51 GMT
- Title: Quantifying the particle aspect of quantum systems
- Authors: Sreetama Das, Indranil Chakrabarty, Arun Kumar Pati, Aditi Sen De, Ujjwal Sen,
- Abstract summary: We discuss the possibility of a quantum system to exhibit properties akin to both the classically held notions of being a particle and a wave.
A conceptual foundation for the wave nature of a quantum state has recently been presented, through the notion of quantum coherence.
- Score: 0.31457219084519
- License:
- Abstract: The possibility of a quantum system to exhibit properties that are akin to both the classically held notions of being a particle and a wave, is one of the most intriguing aspects of the quantum description of nature. These aspects have been instrumental in understanding paradigmatic natural phenomena as well as to provide nonclassical applications. A conceptual foundation for the wave nature of a quantum state has recently been presented, through the notion of quantum coherence. We introduce here a parallel notion for the particle nature of a quantum state of an arbitrary physical system. We provide elements of a resource theory of particleness, and give a quantification of the same. Finally, we provide evidence for a complementarity between the particleness thus introduced, and the coherence of an arbitrary quantum state.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - General framework of quantum complementarity from a measurement-based
perspective [6.073419957391949]
We develop a framework for demonstrating quantum complementarity in the form of information exclusion relations.
We explore the applications of our theory in entanglement witnessing and elucidate that our IERs lead to an extended form of entropic uncertainty relations.
arXiv Detail & Related papers (2022-10-03T14:20:52Z) - Completing the quantum ontology with the electromagnetic zero-point
field [0.0]
This text begins with a series of critical considerations on the initial interpretation of quantum phenomena observed in atomic systems.
Arguments are given in favour of the random zero-point radiation field (ZPF) as the element needed to complete the quantum process.
The permanent presence of the field drastically affects the dynamics of the particle, which eventually falls under the control of the field.
arXiv Detail & Related papers (2022-07-13T23:11:48Z) - Quantum eraser from duality--entanglement perspective [0.0]
Quantum eraser presents a counterintuitive aspect of the wave-particle duality.
We show that quantum eraser can be quantitatively understood in terms of the recently developed duality--entanglement relation.
We find that a controllable partial erasure of the which-path information is attainable.
arXiv Detail & Related papers (2021-10-24T03:56:30Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum coherence with incomplete set of pointers and corresponding
wave-particle duality [0.0]
Quantum coherence quantifies the amount of superposition in a quantum system.
We develop the corresponding resource theory, identifying the free states and operations.
We obtain a complementarity relation between the so-defined quantum coherence and the which-path information in an interferometric set-up.
arXiv Detail & Related papers (2021-08-12T16:55:40Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Observing Quasiparticles through the Entanglement Lens [0.0]
We argue that the salient features of the quasiparticles, including their quantum numbers, locality and fractionalization are reflected in the entanglement spectrum and in the mutual information.
We illustrate these ideas in the specific context of the $d=1$ transverse field Ising model with an integrability breaking perturbation.
arXiv Detail & Related papers (2020-07-08T18:00:00Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.