Precipitation nowcasting with generative diffusion models
- URL: http://arxiv.org/abs/2308.06733v2
- Date: Tue, 5 Sep 2023 11:18:56 GMT
- Title: Precipitation nowcasting with generative diffusion models
- Authors: Andrea Asperti, Fabio Merizzi, Alberto Paparella, Giorgio Pedrazzi,
Matteo Angelinelli and Stefano Colamonaco
- Abstract summary: We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years traditional numerical methods for accurate weather prediction
have been increasingly challenged by deep learning methods. Numerous historical
datasets used for short and medium-range weather forecasts are typically
organized into a regular spatial grid structure. This arrangement closely
resembles images: each weather variable can be visualized as a map or, when
considering the temporal axis, as a video. Several classes of generative
models, comprising Generative Adversarial Networks, Variational Autoencoders,
or the recent Denoising Diffusion Models have largely proved their
applicability to the next-frame prediction problem, and is thus natural to test
their performance on the weather prediction benchmarks. Diffusion models are
particularly appealing in this context, due to the intrinsically probabilistic
nature of weather forecasting: what we are really interested to model is the
probability distribution of weather indicators, whose expected value is the
most likely prediction.
In our study, we focus on a specific subset of the ERA-5 dataset, which
includes hourly data pertaining to Central Europe from the years 2016 to 2021.
Within this context, we examine the efficacy of diffusion models in handling
the task of precipitation nowcasting. Our work is conducted in comparison to
the performance of well-established U-Net models, as documented in the existing
literature. Our proposed approach of Generative Ensemble Diffusion (GED)
utilizes a diffusion model to generate a set of possible weather scenarios
which are then amalgamated into a probable prediction via the use of a
post-processing network. This approach, in comparison to recent deep learning
models, substantially outperformed them in terms of overall performance.
Related papers
- WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
We introduce WeatherReal, a novel benchmark dataset for weather forecasting derived from global near-surface in-situ observations.
This paper details the sources and processing methodologies underlying the dataset, and illustrates the advantage of in-situ observations in capturing hyper-local and extreme weather.
Our work aims to advance the AI-based weather forecasting research towards a more application-focused and operation-ready approach.
arXiv Detail & Related papers (2024-09-14T08:53:46Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
We formulate the novel problem of counterfactual generation for time series forecasting, and propose an algorithm, called ForecastCF.
ForecastCF solves the problem by applying gradient-based perturbations to the original time series.
Our results show that ForecastCF outperforms the baseline in terms of counterfactual validity and data manifold closeness.
arXiv Detail & Related papers (2023-10-12T08:51:59Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.