Predicting Temporal Aspects of Movement for Predictive Replication in
Fog Environments
- URL: http://arxiv.org/abs/2306.00575v4
- Date: Mon, 19 Feb 2024 09:46:27 GMT
- Title: Predicting Temporal Aspects of Movement for Predictive Replication in
Fog Environments
- Authors: Emil Balitzki and Tobias Pfandzelter and David Bermbach
- Abstract summary: Blind or reactive data falls short in harnessing the potential of fog computing.
We propose a novel model using Holt-Winter's Exponential Smoothing for temporal prediction.
In a fog network simulation with real user trajectories our model achieves a 15% reduction in excess data with a marginal 1% decrease in data availability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To fully exploit the benefits of the fog environment, efficient management of
data locality is crucial. Blind or reactive data replication falls short in
harnessing the potential of fog computing, necessitating more advanced
techniques for predicting where and when clients will connect. While spatial
prediction has received considerable attention, temporal prediction remains
understudied.
Our paper addresses this gap by examining the advantages of incorporating
temporal prediction into existing spatial prediction models. We also provide a
comprehensive analysis of spatio-temporal prediction models, such as Deep
Neural Networks and Markov models, in the context of predictive replication. We
propose a novel model using Holt-Winter's Exponential Smoothing for temporal
prediction, leveraging sequential and periodical user movement patterns. In a
fog network simulation with real user trajectories our model achieves a 15%
reduction in excess data with a marginal 1% decrease in data availability.
Related papers
- A Unified Replay-based Continuous Learning Framework for Spatio-Temporal Prediction on Streaming Data [26.570986572374085]
We propose a unified replay-based continuous learning framework to enable prediction on streaming data.
The framework includes a replay buffer of previously learned samples that are fused with data using a-temporal mixup mechanism to preserve historical knowledge.
arXiv Detail & Related papers (2024-04-23T13:02:11Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life
Prediction [1.831835396047386]
This study presents the Spatio-Temporal Attention Graph Neural Network.
Our model combines graph neural networks and temporal convolutional neural networks for spatial and temporal feature extraction.
Comprehensive experiments were conducted on the C-MAPSS dataset to evaluate the impact of unified versus clustering normalization.
arXiv Detail & Related papers (2024-01-29T08:49:53Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Precipitation nowcasting with generative diffusion models [0.0]
We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
arXiv Detail & Related papers (2023-08-13T09:51:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Multi-axis Attentive Prediction for Sparse EventData: An Application to
Crime Prediction [16.654369376687296]
We present a purely attentional approach to extract both short-term dynamics and long-term semantics of event propagation through two observation angles.
The proposed contrastive learning objective significantly enhances the MAPSED's ability to capture semantics and dynamics of events.
arXiv Detail & Related papers (2021-10-05T02:38:46Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.