Theoretical Analysis of the Advantage of Deepening Neural Networks
- URL: http://arxiv.org/abs/2009.11479v1
- Date: Thu, 24 Sep 2020 04:10:50 GMT
- Title: Theoretical Analysis of the Advantage of Deepening Neural Networks
- Authors: Yasushi Esaki and Yuta Nakahara and Toshiyasu Matsushima
- Abstract summary: It is important to know the expressivity of functions computable by deep neural networks.
By the two criteria, we show that to increase layers is more effective than to increase units at each layer on improving the expressivity of deep neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose two new criteria to understand the advantage of deepening neural
networks. It is important to know the expressivity of functions computable by
deep neural networks in order to understand the advantage of deepening neural
networks. Unless deep neural networks have enough expressivity, they cannot
have good performance even though learning is successful. In this situation,
the proposed criteria contribute to understanding the advantage of deepening
neural networks since they can evaluate the expressivity independently from the
efficiency of learning. The first criterion shows the approximation accuracy of
deep neural networks to the target function. This criterion has the background
that the goal of deep learning is approximating the target function by deep
neural networks. The second criterion shows the property of linear regions of
functions computable by deep neural networks. This criterion has the background
that deep neural networks whose activation functions are piecewise linear are
also piecewise linear. Furthermore, by the two criteria, we show that to
increase layers is more effective than to increase units at each layer on
improving the expressivity of deep neural networks.
Related papers
- Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Neural Network Pruning as Spectrum Preserving Process [7.386663473785839]
We identify the close connection between matrix spectrum learning and neural network training for dense and convolutional layers.
We propose a matrix sparsification algorithm tailored for neural network pruning that yields better pruning result.
arXiv Detail & Related papers (2023-07-18T05:39:32Z) - Functional Connectome: Approximating Brain Networks with Artificial
Neural Networks [1.952097552284465]
We show that trained deep neural networks are able to capture the computations performed by synthetic biological networks with high accuracy.
We show that trained deep neural networks are able to perform zero-shot generalisation in novel environments.
Our study reveals a novel and promising direction in systems neuroscience, and can be expanded upon with a multitude of downstream applications.
arXiv Detail & Related papers (2022-11-23T13:12:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Consistency of Neural Networks with Regularization [0.0]
This paper proposes the general framework of neural networks with regularization and prove its consistency.
Two types of activation functions: hyperbolic function(Tanh) and rectified linear unit(ReLU) have been taken into consideration.
arXiv Detail & Related papers (2022-06-22T23:33:39Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Fourier Neural Networks for Function Approximation [2.840363325289377]
It is proved extensively that neural networks are universal approximators.
It is specifically proved that for a narrow neural network to approximate a function which is otherwise implemented by a deep Neural network, the network take exponentially large number of neurons.
arXiv Detail & Related papers (2021-10-21T09:30:26Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
In certain infinitely-wide neural networks, the neural tangent kernel (NTK) theory fully characterizes generalization.
We show that the linear approximations can indeed rank the learning complexity of certain tasks for neural networks.
Our work provides concrete examples of novel deep learning phenomena which can inspire future theoretical research.
arXiv Detail & Related papers (2021-06-12T13:05:11Z) - The Connection Between Approximation, Depth Separation and Learnability
in Neural Networks [70.55686685872008]
We study the connection between learnability and approximation capacity.
We show that learnability with deep networks of a target function depends on the ability of simpler classes to approximate the target.
arXiv Detail & Related papers (2021-01-31T11:32:30Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Expressivity of Deep Neural Networks [2.7909470193274593]
In this review paper, we give a comprehensive overview of the large variety of approximation results for neural networks.
While the mainbody of existing results is for general feedforward architectures, we also depict approximation results for convolutional, residual and recurrent neural networks.
arXiv Detail & Related papers (2020-07-09T13:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.