Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach
- URL: http://arxiv.org/abs/2007.04833v3
- Date: Mon, 7 Mar 2022 03:38:24 GMT
- Title: Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach
- Authors: Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, Hongyuan Zha
- Abstract summary: Recommendation models can effectively estimate underlying user interests and predict one's future behaviors.
We propose an inductive collaborative filtering framework that contains two representation models.
Our model achieves promising results for recommendation on few-shot users with limited training ratings and new unseen users.
- Score: 115.76667128325361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommendation models can effectively estimate underlying user interests and
predict one's future behaviors by factorizing an observed user-item rating
matrix into products of two sets of latent factors. However, the user-specific
embedding factors can only be learned in a transductive way, making it
difficult to handle new users on-the-fly. In this paper, we propose an
inductive collaborative filtering framework that contains two representation
models. The first model follows conventional matrix factorization which
factorizes a group of key users' rating matrix to obtain meta latents. The
second model resorts to attention-based structure learning that estimates
hidden relations from query to key users and learns to leverage meta latents to
inductively compute embeddings for query users via neural message passing. Our
model enables inductive representation learning for users and meanwhile
guarantees equivalent representation capacity as matrix factorization.
Experiments demonstrate that our model achieves promising results for
recommendation on few-shot users with limited training ratings and new unseen
users which are commonly encountered in open-world recommender systems.
Related papers
- Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Debiased Recommendation with Neural Stratification [19.841871819722016]
We propose to cluster the users for computing more accurate IPS via increasing the exposure densities.
We conduct extensive experiments based on real-world datasets to demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-08-15T15:45:35Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Model Learning with Personalized Interpretability Estimation (ML-PIE) [2.862606936691229]
High-stakes applications require AI-generated models to be interpretable.
Current algorithms for the synthesis of potentially interpretable models rely on objectives or regularization terms.
We propose an approach for the synthesis of models that are tailored to the user.
arXiv Detail & Related papers (2021-04-13T09:47:48Z) - On Variational Inference for User Modeling in Attribute-Driven
Collaborative Filtering [10.64460581091531]
We present an approach to use causal inference to learn user-attribute affinities through temporal contexts.
We formulate this objective as a Probabilistic Machine Learning problem and apply a variational inference based method to estimate the model parameters.
arXiv Detail & Related papers (2020-12-02T22:39:58Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.