On Variational Inference for User Modeling in Attribute-Driven
Collaborative Filtering
- URL: http://arxiv.org/abs/2012.01577v1
- Date: Wed, 2 Dec 2020 22:39:58 GMT
- Title: On Variational Inference for User Modeling in Attribute-Driven
Collaborative Filtering
- Authors: Venugopal Mani, Ramasubramanian Balasubramanian, Sushant Kumar,
Abhinav Mathur, Kannan Achan
- Abstract summary: We present an approach to use causal inference to learn user-attribute affinities through temporal contexts.
We formulate this objective as a Probabilistic Machine Learning problem and apply a variational inference based method to estimate the model parameters.
- Score: 10.64460581091531
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender Systems have become an integral part of online e-Commerce
platforms, driving customer engagement and revenue. Most popular recommender
systems attempt to learn from users' past engagement data to understand
behavioral traits of users and use that to predict future behavior. In this
work, we present an approach to use causal inference to learn user-attribute
affinities through temporal contexts. We formulate this objective as a
Probabilistic Machine Learning problem and apply a variational inference based
method to estimate the model parameters. We demonstrate the performance of the
proposed method on the next attribute prediction task on two real world
datasets and show that it outperforms standard baseline methods.
Related papers
- New User Event Prediction Through the Lens of Causal Inference [20.676353189313737]
We propose a novel discrete event prediction framework for new users.
Our method offers an unbiased prediction for new users without needing to know their categories.
We demonstrate the superior performance of the proposed framework with a numerical simulation study and two real-world applications.
arXiv Detail & Related papers (2024-07-08T05:35:54Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Conformal Prediction in Multi-User Settings: An Evaluation [0.10231119246773925]
Machine learning models are trained and evaluated without making any distinction between users.
This produces inaccurate performance metrics estimates in multi-user settings.
In this work we evaluated the conformal prediction framework in several multi-user settings.
arXiv Detail & Related papers (2023-12-08T17:33:23Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z) - Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach [115.76667128325361]
Recommendation models can effectively estimate underlying user interests and predict one's future behaviors.
We propose an inductive collaborative filtering framework that contains two representation models.
Our model achieves promising results for recommendation on few-shot users with limited training ratings and new unseen users.
arXiv Detail & Related papers (2020-07-09T14:31:25Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.