Debiased Recommendation with Neural Stratification
- URL: http://arxiv.org/abs/2208.07281v1
- Date: Mon, 15 Aug 2022 15:45:35 GMT
- Title: Debiased Recommendation with Neural Stratification
- Authors: Quanyu Dai, Zhenhua Dong and Xu Chen
- Abstract summary: We propose to cluster the users for computing more accurate IPS via increasing the exposure densities.
We conduct extensive experiments based on real-world datasets to demonstrate the effectiveness of the proposed method.
- Score: 19.841871819722016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Debiased recommender models have recently attracted increasing attention from
the academic and industry communities. Existing models are mostly based on the
technique of inverse propensity score (IPS). However, in the recommendation
domain, IPS can be hard to estimate given the sparse and noisy nature of the
observed user-item exposure data. To alleviate this problem, in this paper, we
assume that the user preference can be dominated by a small amount of latent
factors, and propose to cluster the users for computing more accurate IPS via
increasing the exposure densities. Basically, such method is similar with the
spirit of stratification models in applied statistics. However, unlike previous
heuristic stratification strategy, we learn the cluster criterion by presenting
the users with low ranking embeddings, which are future shared with the user
representations in the recommender model. At last, we find that our model has
strong connections with the previous two types of debiased recommender models.
We conduct extensive experiments based on real-world datasets to demonstrate
the effectiveness of the proposed method.
Related papers
- Debiased Recommendation with Noisy Feedback [41.38490962524047]
We study intersectional threats to the unbiased learning of the prediction model from data MNAR and OME in the collected data.
First, we design OME-EIB, OME-IPS, and OME-DR estimators, which largely extend the existing estimators to combat OME in real-world recommendation scenarios.
arXiv Detail & Related papers (2024-06-24T23:42:18Z) - Debiased Model-based Interactive Recommendation [22.007617148466807]
We develop a model called textbfidentifiable textbfDebiased textbfModel-based textbfInteractive textbfRecommendation (textbfiDMIR in short)
For the first drawback, we devise a debiased causal world model based on the causal mechanism of the time-varying recommendation generation process with identification guarantees.
For the second drawback, we devise a debiased contrastive policy, which coincides with the debiased contrastive learning and avoids sampling bias
arXiv Detail & Related papers (2024-02-24T14:10:04Z) - Exploring Popularity Bias in Session-based Recommendation [0.6798775532273751]
We extend the analysis to session-based setup and adapted propensity calculation to the unique characteristics of session-based recommendation tasks.
We study the distributions of propensity and different stratification techniques on different datasets and find that propensity-related traits are actually dataset-specific.
arXiv Detail & Related papers (2023-12-13T02:48:35Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Off-policy evaluation for learning-to-rank via interpolating the
item-position model and the position-based model [83.83064559894989]
A critical need for industrial recommender systems is the ability to evaluate recommendation policies offline, before deploying them to production.
We develop a new estimator that mitigates the problems of the two most popular off-policy estimators for rankings.
In particular, the new estimator, called INTERPOL, addresses the bias of a potentially misspecified position-based model.
arXiv Detail & Related papers (2022-10-15T17:22:30Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - CausPref: Causal Preference Learning for Out-of-Distribution
Recommendation [36.22965012642248]
The current recommender system is still vulnerable to the distribution shift of users and items in realistic scenarios.
We propose to incorporate the recommendation-specific DAG learner into a novel causal preference-based recommendation framework named CausPref.
Our approach surpasses the benchmark models significantly under types of out-of-distribution settings.
arXiv Detail & Related papers (2022-02-08T16:42:03Z) - Deep Causal Reasoning for Recommendations [47.83224399498504]
A new trend in recommender system research is to negate the influence of confounders from a causal perspective.
We model the recommendation as a multi-cause multi-outcome (MCMO) inference problem.
We show that MCMO modeling may lead to high variance due to scarce observations associated with the high-dimensional causal space.
arXiv Detail & Related papers (2022-01-06T15:00:01Z) - Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach [115.76667128325361]
Recommendation models can effectively estimate underlying user interests and predict one's future behaviors.
We propose an inductive collaborative filtering framework that contains two representation models.
Our model achieves promising results for recommendation on few-shot users with limited training ratings and new unseen users.
arXiv Detail & Related papers (2020-07-09T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.