論文の概要: Guiding Deep Molecular Optimization with Genetic Exploration
- arxiv url: http://arxiv.org/abs/2007.04897v3
- Date: Tue, 27 Oct 2020 10:49:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 13:00:31.041035
- Title: Guiding Deep Molecular Optimization with Genetic Exploration
- Title(参考訳): 遺伝的探索による深層分子最適化の導出
- Authors: Sungsoo Ahn, Junsu Kim, Hankook Lee, Jinwoo Shin
- Abstract要約: 本稿では,深層ニューラルネットワーク(DNN)を訓練し,高次分子を生成する,遺伝的専門家誘導学習(GEGL)を提案する。
大規模な実験により、GEGLは最先端の手法よりも大幅に改善されていることが示された。
- 参考スコア(独自算出の注目度): 79.50698140997726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: De novo molecular design attempts to search over the chemical space for
molecules with the desired property. Recently, deep learning has gained
considerable attention as a promising approach to solve the problem. In this
paper, we propose genetic expert-guided learning (GEGL), a simple yet novel
framework for training a deep neural network (DNN) to generate highly-rewarding
molecules. Our main idea is to design a "genetic expert improvement" procedure,
which generates high-quality targets for imitation learning of the DNN.
Extensive experiments show that GEGL significantly improves over
state-of-the-art methods. For example, GEGL manages to solve the penalized
octanol-water partition coefficient optimization with a score of 31.40, while
the best-known score in the literature is 27.22. Besides, for the GuacaMol
benchmark with 20 tasks, our method achieves the highest score for 19 tasks, in
comparison with state-of-the-art methods, and newly obtains the perfect score
for three tasks.
- Abstract(参考訳): de novo分子設計は、望ましい性質を持つ分子の化学空間を探索しようとするものである。
近年,ディープラーニングが課題解決の有望なアプローチとして注目されている。
本稿では、ディープニューラルネットワーク(DNN)を訓練して高次分子を生成するための、単純かつ斬新なフレームワークである遺伝的専門家誘導学習(GEGL)を提案する。
本研究の主な目的は,DNNの模倣学習のための高品質な目標を生成する「遺伝的専門家改善」手順を設計することである。
大規模な実験により、GEGLは最先端の手法よりも大幅に改善されていることが示された。
例えば、GEGLは、ペナル化オクタノール-水分配係数の最適化を31.40点で解き、文献で最もよく知られているスコアは27.22点である。
また,20タスクのGuacaMolベンチマークでは,最新手法と比較して,19タスクの最高スコアを達成し,3タスクの完全スコアを新たに取得した。
関連論文リスト
- Teaching MLPs to Master Heterogeneous Graph-Structured Knowledge for Efficient and Accurate Inference [53.38082028252104]
我々はHGNNの優れた性能とリレーショナルの効率的な推論を組み合わせたHG2MとHG2M+を紹介する。
HG2Mは直接、教師HGNNの入力とソフトラベルをターゲットとしてノード特徴を持つ生徒を訓練する。
HG2Mは、大規模IGB-3M-19データセット上でのHGNNよりも379.24$timesの速度アップを示す。
論文 参考訳(メタデータ) (2024-11-21T11:39:09Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3次元生成モデルは、構造ベースドラッグデザイン(SBDD)において大きな可能性を秘めている。
問題を分子生成と特性予測に分離する。
後者は相乗的に拡散サンプリング過程を導出し、誘導拡散を促進し、所望の性質を持つ有意義な分子を創出する。
この誘導分子生成過程をTAGMolと呼ぶ。
論文 参考訳(メタデータ) (2024-06-03T14:43:54Z) - Genetic-guided GFlowNets for Sample Efficient Molecular Optimization [33.270494123656746]
深層学習に基づく生成手法の最近の進歩は、将来性を示しているが、サンプル効率の問題に直面している。
本稿では,強力な遺伝的アルゴリズムを深く生成する手法として,サンプル効率のよい分子最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-05T04:12:40Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - De novo design of protein target specific scaffold-based Inhibitors via
Reinforcement Learning [8.210294479991118]
標的タンパク質の分子開発への現在のアプローチは直観駆動であり、反復的な設計-テストサイクルが遅くなるのを妨げている。
本稿では3D-MolGNN$_RL$と呼ばれる新しいフレームワークを提案する。
われわれのアプローチは、最適化された活動、有効性、生体物理特性によるリード最適化のための解釈可能な人工知能(AI)ツールとして機能する。
論文 参考訳(メタデータ) (2022-05-21T00:47:35Z) - CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed
Molecular Generation [23.618366377098614]
本稿では,分子潜在表現ベクトルを最適化した遅延空間におけるコスト効率のよい進化戦略を提案する。
我々は、潜伏空間と観測空間をマッピングするために、事前訓練された分子生成モデルを採用する。
提案手法といくつかの高度な手法を比較した複数の最適化タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-11-30T11:02:18Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
本稿では,RNA配列設計に強化学習を適用した新しいベンチマークを提案する。このベンチマークでは,目的関数を配列の二次構造における自由エネルギーとして定義する。
本稿では,これらのアルゴリズムに対して行うアブレーション解析の結果と,バッチ間でのアルゴリズムの性能を示すグラフを示す。
論文 参考訳(メタデータ) (2021-11-05T02:54:06Z) - JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural
Networks for Inverse Molecular Design [1.6114012813668934]
逆分子設計、すなわち特定の目的特性を持つ分子を設計することは最適化問題として考えられる。
ジャヌス (Janus) は、2つの個体群を伝播させ、もう1つは探索用、もう1つは搾取用の遺伝的アルゴリズムである。
Janusは、化学空間のサンプリングを増強するために能動的学習を通じて分子特性を近似するディープニューラルネットワークによって強化される。
論文 参考訳(メタデータ) (2021-06-07T23:41:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。