論文の概要: Improving Adversarial Robustness by Enforcing Local and Global
Compactness
- arxiv url: http://arxiv.org/abs/2007.05123v1
- Date: Fri, 10 Jul 2020 00:43:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 20:48:58.806262
- Title: Improving Adversarial Robustness by Enforcing Local and Global
Compactness
- Title(参考訳): 局所的・大域的コンパクト化による対向ロバスト性の向上
- Authors: Anh Bui, Trung Le, He Zhao, Paul Montague, Olivier deVel, Tamas
Abraham, Dinh Phung
- Abstract要約: 敵の訓練は、広範囲の攻撃に一貫して抵抗する最も成功した方法である。
本稿では,局所的・言語的コンパクト性とクラスタリングの仮定を強制する分散分散化ネットワークを提案する。
実験の結果,提案するコンポーネントによる対人訓練の強化は,ネットワークの堅牢性をさらに向上させる可能性が示唆された。
- 参考スコア(独自算出の注目度): 19.8818435601131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fact that deep neural networks are susceptible to crafted perturbations
severely impacts the use of deep learning in certain domains of application.
Among many developed defense models against such attacks, adversarial training
emerges as the most successful method that consistently resists a wide range of
attacks. In this work, based on an observation from a previous study that the
representations of a clean data example and its adversarial examples become
more divergent in higher layers of a deep neural net, we propose the Adversary
Divergence Reduction Network which enforces local/global compactness and the
clustering assumption over an intermediate layer of a deep neural network. We
conduct comprehensive experiments to understand the isolating behavior of each
component (i.e., local/global compactness and the clustering assumption) and
compare our proposed model with state-of-the-art adversarial training methods.
The experimental results demonstrate that augmenting adversarial training with
our proposed components can further improve the robustness of the network,
leading to higher unperturbed and adversarial predictive performances.
- Abstract(参考訳): 深層ニューラルネットワークが人工摂動の影響を受けやすいという事実は、特定の分野におけるディープラーニングの使用に大きな影響を与える。
このような攻撃に対する多くの発達した防衛モデルの中で、敵の訓練は幅広い攻撃に一貫して抵抗する最も成功した方法として現れる。
本研究では,深層ニューラルネットワークの上位層において,クリーンデータ例とその逆例の表現がより多様化する,というこれまでの研究から得られた観察に基づいて,局所的/グローバル的コンパクト性と,ディープニューラルネットワークの中間層上でのクラスタリング仮定を強制する逆分岐低減ネットワークを提案する。
各コンポーネントの分離行動(すなわち、局所的/グローバル的コンパクト性とクラスタリングの仮定)を理解するための包括的な実験を行い、提案モデルと最先端の対向学習法を比較した。
実験結果から,提案するコンポーネントによる対向トレーニングの強化はネットワークの堅牢性をさらに向上させ,非摂動・対向予測性能の向上につながることが示された。
関連論文リスト
- Towards Improving Robustness Against Common Corruptions using Mixture of
Class Specific Experts [10.27974860479791]
本稿では,クラス特化エキスパートアーキテクチャの混合として知られる新しいパラダイムを紹介する。
提案したアーキテクチャは、一般的なニューラルネットワーク構造に関連する脆弱性を軽減することを目的としている。
論文 参考訳(メタデータ) (2023-11-16T20:09:47Z) - Beyond Empirical Risk Minimization: Local Structure Preserving
Regularization for Improving Adversarial Robustness [28.853413482357634]
局所構造保存(LSP)正則化は、学習された埋め込み空間における入力空間の局所構造を保存することを目的としている。
本研究では,学習した埋め込み空間における入力空間の局所構造を保存することを目的とした,新しい局所構造保存(LSP)正規化を提案する。
論文 参考訳(メタデータ) (2023-03-29T17:18:58Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Defensive Tensorization [113.96183766922393]
本稿では,ネットワークの遅延高次分解を利用した対角防御手法であるテンソル防御手法を提案する。
我々は,標準画像分類ベンチマークにおけるアプローチの有効性を実証的に実証した。
我々は,音声タスクとバイナリネットワークを考慮し,ドメイン間のアプローチと低精度アーキテクチャの汎用性を検証した。
論文 参考訳(メタデータ) (2021-10-26T17:00:16Z) - Pruning in the Face of Adversaries [0.0]
ニューラルネットワークのプルーニングがL-0,L-2,L-infinity攻撃に対する対向的ロバスト性に及ぼす影響を評価する。
その結果,ニューラルネットワークのプルーニングと対向ロバスト性は相互に排他的ではないことが確認された。
分析を敵のシナリオに付加的な仮定を取り入れた状況にまで拡張し、状況によって異なる戦略が最適であることを示す。
論文 参考訳(メタデータ) (2021-08-19T09:06:16Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
我々は、モード接続を用いて、ディープニューラルネットワークの対角的堅牢性を研究する。
実験では、異なるネットワークアーキテクチャやデータセットに適用される様々な種類の敵攻撃について取り上げる。
以上の結果から,モード接続は,敵の強靭性を評価・改善するための総合的なツールであり,実用的な手段であることが示唆された。
論文 参考訳(メタデータ) (2020-04-30T19:12:50Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturbは、ディープニューラルネットワークの対角的堅牢性を改善するために、エンドツーエンドの機能摂動学習アプローチである。
予測最大化にインスパイアされ、ネットワークと雑音パラメータを連続的にトレーニングするために、交互にバックプロパゲーショントレーニングアルゴリズムが導入された。
論文 参考訳(メタデータ) (2020-03-02T18:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。