論文の概要: Sample-based Regularization: A Transfer Learning Strategy Toward Better
Generalization
- arxiv url: http://arxiv.org/abs/2007.05181v1
- Date: Fri, 10 Jul 2020 06:02:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 21:06:37.732593
- Title: Sample-based Regularization: A Transfer Learning Strategy Toward Better
Generalization
- Title(参考訳): サンプルベース正規化: より良い一般化に向けた伝達学習戦略
- Authors: Yunho Jeon, Yongseok Choi, Jaesun Park, Subin Yi, Dongyeon Cho, Jiwon
Kim
- Abstract要約: 少量のデータでディープニューラルネットワークをトレーニングすることは、難しい問題である。
私たちがよく直面する現実的な難題の1つは、多くのサンプルを集めることです。
大規模なデータセットでトレーニングされたソースモデルを使用することで、トレーニングデータの不足に起因する過度な適合を軽減することができる。
- 参考スコア(独自算出の注目度): 8.432864879027724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training a deep neural network with a small amount of data is a challenging
problem as it is vulnerable to overfitting. However, one of the practical
difficulties that we often face is to collect many samples. Transfer learning
is a cost-effective solution to this problem. By using the source model trained
with a large-scale dataset, the target model can alleviate the overfitting
originated from the lack of training data. Resorting to the ability of
generalization of the source model, several methods proposed to use the source
knowledge during the whole training procedure. However, this is likely to
restrict the potential of the target model and some transferred knowledge from
the source can interfere with the training procedure. For improving the
generalization performance of the target model with a few training samples, we
proposed a regularization method called sample-based regularization (SBR),
which does not rely on the source's knowledge during training. With SBR, we
suggested a new training framework for transfer learning. Experimental results
showed that our framework outperformed existing methods in various
configurations.
- Abstract(参考訳): 少量のデータでディープニューラルネットワークをトレーニングすることは、オーバーフィットの脆弱性があるため、難しい問題である。
しかし、私たちがしばしば直面する現実的な困難のひとつは、多くのサンプルを集めることです。
移行学習はこの問題に対する費用対効果の高い解決策である。
大規模なデータセットでトレーニングされたソースモデルを使用することで、トレーニングデータ不足に起因するオーバーフィットを軽減することができる。
ソースモデルの一般化能力に基づき、トレーニング手順全体においてソース知識を使用する方法がいくつか提案されている。
しかし、これはターゲットモデルの可能性を制限する可能性があり、ソースから転送された知識はトレーニング手順に干渉する可能性がある。
そこで本研究では,サンプルベース正規化 (SBR) と呼ばれる正規化手法を提案する。
SBRでは、トランスファー学習のための新しいトレーニングフレームワークを提案する。
実験の結果,既存の手法を各種構成で上回っていた。
関連論文リスト
- Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
我々はData Adaptive Tracebackと呼ばれる新しい適応フレームワークを提案する。
具体的には、ゼロショット法を用いて、事前学習データの最もダウンストリームなタスク関連サブセットを抽出する。
我々は、擬似ラベルに基づく半教師付き手法を採用し、事前学習画像の再利用と、半教師付き学習における確証バイアス問題に対処するための視覚言語コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T18:01:58Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - Back to Basics: A Simple Recipe for Improving Out-of-Domain Retrieval in
Dense Encoders [63.28408887247742]
得られたモデルにおいて,より優れた一般化能力を得るために,トレーニング手順の改善が可能であるかを検討する。
我々は、高密度エンコーダをトレーニングするための簡単なレシピを推奨する: LoRAのようなパラメータ効率のよいMSMARCOのトレーニング。
論文 参考訳(メタデータ) (2023-11-16T10:42:58Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Reconstructing Training Data from Diverse ML Models by Ensemble
Inversion [8.414622657659168]
モデルインバージョン(MI)は、学習された機械学習(ML)モデルへのアクセスを敵が悪用するものであり、研究の注目を集めている。
本研究では,訓練されたモデルのアンサンブルに制約されたジェネレータを訓練することにより,元のトレーニングデータの分布を推定するアンサンブル変換手法を提案する。
データセットを使わずに高品質な結果が得られ、想定されるトレーニングデータに類似した補助データセットを利用することで、結果がどう改善されるかを示す。
論文 参考訳(メタデータ) (2021-11-05T18:59:01Z) - Friendly Training: Neural Networks Can Adapt Data To Make Learning
Easier [23.886422706697882]
フレンドリートレーニング(Friendly Training)と呼ばれる新しいトレーニング手順を提案する。
フレンドリートレーニングは、情報サブ選択とランダム選択に関して改善をもたらすことを示す。
その結果,入力データへの適応は学習を安定させ,ネットワークのスキル一般化を改善するための有効な方法であることが示唆された。
論文 参考訳(メタデータ) (2021-06-21T10:50:34Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
転送学習の限界を特徴付けるための統計的ミニマックスフレームワークを開発する。
ラベル付きソース数とターゲットデータの関数として,任意のアルゴリズムで達成可能なターゲット一般化誤差に対して,低いバウンドを導出する。
論文 参考訳(メタデータ) (2020-06-16T22:49:26Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。