論文の概要: Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification
- arxiv url: http://arxiv.org/abs/2407.08787v1
- Date: Thu, 11 Jul 2024 18:01:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 03:38:34.244818
- Title: Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification
- Title(参考訳): 画像分類における視覚言語基礎モデルのためのデータ適応的トレースバック
- Authors: Wenshuo Peng, Kaipeng Zhang, Yue Yang, Hao Zhang, Yu Qiao,
- Abstract要約: 我々はData Adaptive Tracebackと呼ばれる新しい適応フレームワークを提案する。
具体的には、ゼロショット法を用いて、事前学習データの最もダウンストリームなタスク関連サブセットを抽出する。
我々は、擬似ラベルに基づく半教師付き手法を採用し、事前学習画像の再利用と、半教師付き学習における確証バイアス問題に対処するための視覚言語コントラスト学習手法を提案する。
- 参考スコア(独自算出の注目度): 34.37262622415682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language foundation models have been incredibly successful in a wide range of downstream computer vision tasks using adaptation methods. However, due to the high cost of obtaining pre-training datasets, pairs with weak image-text correlation in the data exist in large numbers. We call them weak-paired samples. Due to the limitations of these weak-paired samples, the pre-training model are unable to mine all the knowledge from pre-training data. The existing adaptation methods do not consider the missing knowledge, which may lead to crucial task-related knowledge for the downstream tasks being ignored. To address this issue, we propose a new adaptation framework called Data Adaptive Traceback (DAT). Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data to enable the downstream tasks. Furthermore, we adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning. We conduct extensive experiments that show our proposed DAT approach meaningfully improves various benchmark datasets performance over traditional adaptation methods by simply.
- Abstract(参考訳): 視覚言語基礎モデルは、適応手法を用いた幅広い下流コンピュータビジョンタスクで驚くほど成功している。
しかし、事前学習データセットを取得するコストが高いため、データに弱い画像テキスト相関を持つペアが多数存在する。
弱いペアのサンプルと呼んでいます。
これらの弱いペアリングサンプルの限界のため、事前学習モデルは事前学習データからすべての知識をマイニングすることができない。
既存の適応手法では、不足している知識を考慮せず、ダウンストリームタスクが無視される上で重要なタスク関連知識につながる可能性がある。
この問題に対処するため、我々はData Adaptive Traceback (DAT)と呼ばれる新しい適応フレームワークを提案する。
具体的には、ゼロショット法を用いて、トレーニング済みデータの最もダウンストリームなタスク関連サブセットを抽出し、ダウンストリームタスクを有効にする。
さらに、擬似ラベルに基づく半教師付き手法を採用し、事前学習画像の再利用と、半教師付き学習における確証バイアス問題に対処するための視覚言語コントラスト学習手法を提案する。
提案手法は,従来の適応手法よりも多種多様なベンチマークデータセットの性能を有意に向上させる。
関連論文リスト
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
本稿では,テスト時間適応フレームワークを提案する。
我々は、インスタンスに依存しない履歴サンプルとインスタンスを意識したブースティングサンプルから特徴を検索するための軽量なキー値メモリを維持している。
理論的には,本手法の背後にある合理性を正当化し,アウト・オブ・ディストリビューションとクロスドメイン・データセットの両方において,その有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-20T15:58:43Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt
Learning with Data-Dependent Prior [14.232144691524528]
最近のVision-Language Pretrainedモデルは、多くの下流タスクのバックボーンとなっている。
MLEトレーニングは、トレーニングデータにおいて、コンテキストベクトルを過度に適合する画像特徴に導くことができる。
本稿では,素早い学習のためのベイズ的枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-09T10:15:59Z) - Towards Accelerated Model Training via Bayesian Data Selection [45.62338106716745]
本稿では,モデルの一般化損失に対するデータの影響を調べることによって,より合理的なデータ選択原理を提案する。
近年の研究では、モデルの一般化損失に対するデータの影響を調べることによって、より合理的なデータ選択の原則が提案されている。
この研究は、軽量ベイズ処理を活用し、大規模な事前訓練モデル上に構築された既製のゼロショット予測器を組み込むことにより、これらの問題を解決する。
論文 参考訳(メタデータ) (2023-08-21T07:58:15Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Building Manufacturing Deep Learning Models with Minimal and Imbalanced
Training Data Using Domain Adaptation and Data Augmentation [15.333573151694576]
本稿では,目標学習課題に対するラベル付き学習データ不足の問題に対処する新しいドメイン適応(DA)手法を提案する。
我々のアプローチは、ソースデータセットとターゲット学習タスクで利用可能なデータセットが同一または異なる機能空間を持つシナリオで機能する。
我々は、ウェハ欠陥予測のための画像データを用いて、組み合わせたアプローチを評価する。
論文 参考訳(メタデータ) (2023-05-31T21:45:34Z) - Semi-Supervised Learning Based on Reference Model for Low-resource TTS [32.731900584216724]
本稿では,ラベル付きターゲットデータに制限があるニューラルネットワークの半教師付き学習手法を提案する。
実験結果から,対象データに制限のある半教師付き学習手法は,音声合成における自然性と頑健性を達成するために,テストデータの音声品質を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2022-10-25T07:48:07Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
我々は、さらなる事前学習段階の正則化として自己蒸留を提案する。
画像およびテキスト分類タスクのための様々なベンチマークデータセットにおける自己蒸留の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2022-09-30T02:25:12Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。