Entanglement Entropy from TFD Entropy Operator
- URL: http://arxiv.org/abs/2007.05365v2
- Date: Wed, 26 May 2021 15:00:04 GMT
- Title: Entanglement Entropy from TFD Entropy Operator
- Authors: M. Dias, Daniel L. Nedel and C. R. Senise Jr
- Abstract summary: We show that for two-dimensional conformal theories defined in a torus, a choice of moduli space allows the typical entropy operator of the TFD to provide the entanglement entropy.
We also propose a model for the evolution of the entanglement entropy and show that it grows linearly with time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, a canonical method to compute entanglement entropy is proposed.
We show that for two-dimensional conformal theories defined in a torus, a
choice of moduli space allows the typical entropy operator of the TFD to
provide the entanglement entropy of the degrees of freedom defined in a segment
and their complement. In this procedure, it is not necessary to make an
analytic continuation from the R\'enyi entropy and the von Neumann entanglement
entropy is calculated directly from the expected value of an entanglement
entropy operator. We also propose a model for the evolution of the entanglement
entropy and show that it grows linearly with time.
Related papers
- The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough [40.82741665804367]
We study a simple approach of maximizing the entropy over observations in place true latent states.
We show how knowledge of the latter can be exploited to compute a regularization of the observation entropy to improve principled performance.
arXiv Detail & Related papers (2024-06-18T17:00:13Z) - How to Partition a Quantum Observable [0.0]
We present a partition of quantum observables in an open quantum system which is inherited from the division of the underlying Hilbert space or configuration space.
This partition leads to the definition of an inhomogeneous continuity equation for generic, non-local observables.
We conclude that Hilbert-space partitioning is the only partition of the von Neumann entropy which is consistent with the Laws of Thermodynamics.
arXiv Detail & Related papers (2024-02-27T21:49:27Z) - A covariant regulator for entanglement entropy: proofs of the Bekenstein
bound and QNEC [0.0]
We show that a notion of entropy differences can be rigorously defined in quantum field theory in a general curved spacetime.
We introduce a novel, covariant regulator for the entropy based on the modular crossed product.
This regulator associates a type II von Neumann algebra to each spacetime subregion, resulting in well-defined renormalized entropies.
arXiv Detail & Related papers (2023-12-12T18:07:13Z) - Timelike entanglement entropy [0.880802134366532]
We define a new complex-valued measure of information called the timelike entanglement entropy (EE)
For holographic systems we define the timelike EE as the total valued area of a particular stationary combination of both space and timelike surfaces.
arXiv Detail & Related papers (2023-02-22T23:16:41Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Subregion Spectrum Form Factor via Pseudo Entropy [0.0]
We consider a transition matrix between the thermofield double state and its time-evolved state in two-dimensional field theories.
We show that the real part of the pseudo entropy behaves similarly to the spectral form factor.
arXiv Detail & Related papers (2021-09-01T13:17:19Z) - Topological pseudo entropy [0.0]
We introduce a pseudo entropy extension of topological entanglement entropy called topological pseudo entropy.
We show that the pseudo entropy in a certain setup is equivalent to the interface entropy in two-dimensional conformal field theories.
We derive a universal formula for a pair of arbitrary boundary states.
arXiv Detail & Related papers (2021-07-05T05:26:17Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Action Redundancy in Reinforcement Learning [54.291331971813364]
We show that transition entropy can be described by two terms; namely, model-dependent transition entropy and action redundancy.
Our results suggest that action redundancy is a fundamental problem in reinforcement learning.
arXiv Detail & Related papers (2021-02-22T19:47:26Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.