DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation
- URL: http://arxiv.org/abs/2105.07962v1
- Date: Mon, 17 May 2021 15:43:59 GMT
- Title: DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation
- Authors: Hritam Basak, Rukhshanda Hussain, Ajay Rana
- Abstract summary: We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid increment of morbidity of brain stroke in the last few years have
been a driving force towards fast and accurate segmentation of stroke lesions
from brain MRI images. With the recent development of deep-learning,
computer-aided and segmentation methods of ischemic stroke lesions have been
useful for clinicians in early diagnosis and treatment planning. However, most
of these methods suffer from inaccurate and unreliable segmentation results
because of their inability to capture sufficient contextual features from the
MRI volumes. To meet these requirements, 3D convolutional neural networks have
been proposed, which, however, suffer from huge computational requirements. To
mitigate these problems, we propose a novel Dimension Fusion Edge-guided
network (DFENet) that can meet both of these requirements by fusing the
features of 2D and 3D CNNs. Unlike other methods, our proposed network uses a
parallel partial decoder (PPD) module for aggregating and upsampling selected
features, rich in important contextual information. Additionally, we use an
edge-guidance and enhanced mixing loss for constantly supervising and
improvising the learning process of the network. The proposed method is
evaluated on publicly available Anatomical Tracings of Lesions After Stroke
(ATLAS) dataset, resulting in mean DSC, IoU, Precision and Recall values of
0.5457, 0.4015, 0.6371, and 0.4969 respectively. The results, when compared to
other state-of-the-art methods, outperforms them by a significant margin.
Therefore, the proposed model is robust, accurate, superior to the existing
methods, and can be relied upon for biomedical applications.
Related papers
- CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images [2.2265536092123006]
We propose the 3D cerebrovascular attention UNet method, named CV-AttentionUNet, for precise extraction of brain vessel images.
To combine the low and high semantics, we applied the attention mechanism.
We believe that the novelty of this algorithm lies in its ability to perform well on both labeled and unlabeled data.
arXiv Detail & Related papers (2023-11-16T22:31:05Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
arXiv Detail & Related papers (2022-08-05T23:20:37Z) - Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric
Segmentation [13.158995287578316]
We propose a dynamic architecture network named Med-DANet to achieve effective accuracy and efficiency trade-off.
For each slice of the input 3D MRI volume, our proposed method learns a slice-specific decision by the Decision Network.
Our proposed method achieves comparable or better results than previous state-of-the-art methods for 3D MRI brain tumor segmentation.
arXiv Detail & Related papers (2022-06-14T03:25:58Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
architectures [0.0]
This work studies 3D encoder-decoder architectures trained with patch-based techniques to reduce memory consumption and decrease the effect of unbalanced data.
We also introduce voxel-wise uncertainty information, both epistemic and aleatoric using test-time dropout (TTD) and data-augmentation (TTA) respectively.
The model and uncertainty estimation measurements proposed in this work have been used in the BraTS'20 Challenge for task 1 and 3 regarding tumor segmentation and uncertainty estimation.
arXiv Detail & Related papers (2020-12-30T19:28:53Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
We propose a context-aware refinement network (CAR-Net) to refine and integrate the feature pyramid representation generated by the UNet.
For keeping the structural connectivity of the brain midline, we introduce a novel connectivity regular loss.
The proposed method requires fewer parameters and outperforms three state-of-the-art methods in terms of four evaluation metrics.
arXiv Detail & Related papers (2020-07-10T14:01:20Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.