論文の概要: Machine Learning Explainability for External Stakeholders
- arxiv url: http://arxiv.org/abs/2007.05408v1
- Date: Fri, 10 Jul 2020 14:27:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 22:27:23.571642
- Title: Machine Learning Explainability for External Stakeholders
- Title(参考訳): 外部利害関係者の機械学習説明可能性
- Authors: Umang Bhatt, McKane Andrus, Adrian Weller, Alice Xiang
- Abstract要約: ブラックボックスを開き、機械学習アルゴリズムをより説明しやすいものにする声が増えている。
我々は,学者,産業専門家,法律学者,政策立案者らとともに,説明可能性に関する共通言語を開発するために1日間のワークショップを開催した。
本稿では、説明可能な機械学習の様々なケーススタディの概要、これらの研究からの教訓、オープンチャレンジについて議論する。
- 参考スコア(独自算出の注目度): 27.677158604772238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning is increasingly deployed in high-stakes contexts
affecting people's livelihoods, there have been growing calls to open the black
box and to make machine learning algorithms more explainable. Providing useful
explanations requires careful consideration of the needs of stakeholders,
including end-users, regulators, and domain experts. Despite this need, little
work has been done to facilitate inter-stakeholder conversation around
explainable machine learning. To help address this gap, we conducted a
closed-door, day-long workshop between academics, industry experts, legal
scholars, and policymakers to develop a shared language around explainability
and to understand the current shortcomings of and potential solutions for
deploying explainable machine learning in service of transparency goals. We
also asked participants to share case studies in deploying explainable machine
learning at scale. In this paper, we provide a short summary of various case
studies of explainable machine learning, lessons from those studies, and
discuss open challenges.
- Abstract(参考訳): 人々の生活に影響を与える高リスクなコンテキストに機械学習が展開されることが増えているため、ブラックボックスを開き、機械学習アルゴリズムをより説明しやすくするための要求が増えている。
有用な説明を提供するには、エンドユーザ、規制当局、ドメインエキスパートを含むステークホルダーのニーズを慎重に考慮する必要がある。
このようなニーズにもかかわらず、説明可能な機械学習に関するステークホルダー間の会話を促進するための作業はほとんど行われていない。
このギャップに対処するため、我々は、学者、業界専門家、法学者、政策立案者との日中ワークショップを開催し、説明可能性に関する共通言語を開発し、透明性の目標を達成するために、説明可能な機械学習を展開するための現在の欠点と潜在的な解決策を理解する。
参加者には,説明可能な機械学習を大規模に展開する上でのケーススタディの共有も求めました。
本稿では,説明可能な機械学習のさまざまなケーススタディ,これらの研究からの教訓を要約し,オープン課題について考察する。
関連論文リスト
- Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Explainability in Machine Learning: a Pedagogical Perspective [9.393988089692947]
我々は、学習過程を構造化して、学生や研究者に機械学習の知識をより多く与える方法について、教育学的視点を提供する。
各種不透明かつ透明な機械学習モデルの利点と欠点について論じる。
我々はまた、学生がどんな機械学習アプリケーションと並行して説明可能性を使うことを学ぶのを助けるために、潜在的な課題を構築する方法についても論じる。
論文 参考訳(メタデータ) (2022-02-21T16:15:57Z) - Explainable Predictive Process Monitoring: A User Evaluation [62.41400549499849]
説明責任は、ブラックボックス機械学習アプローチの透明性の欠如によって動機付けられている。
予測プロセスモニタリングのための説明手法のユーザ評価を行う。
論文 参考訳(メタデータ) (2022-02-15T22:24:21Z) - Rethinking Explainability as a Dialogue: A Practitioner's Perspective [57.87089539718344]
医師、医療専門家、政策立案者に対して、説明を求めるニーズと欲求について尋ねる。
本研究は, 自然言語対話の形での対話的説明を, 意思決定者が強く好むことを示唆する。
これらのニーズを考慮して、インタラクティブな説明を設計する際に、研究者が従うべき5つの原則を概説する。
論文 参考訳(メタデータ) (2022-02-03T22:17:21Z) - Explainable Machine Learning with Prior Knowledge: An Overview [1.1045760002858451]
機械学習モデルの複雑さは、より説明しやすいように研究を誘致している。
機械学習モデルの説明能力を改善するために,事前知識を活用することを提案する。
論文 参考訳(メタデータ) (2021-05-21T07:33:22Z) - Explainable Machine Learning for Fraud Detection [0.47574189356217006]
大規模なデータセットの処理をサポートする機械学習の応用は、金融サービスを含む多くの業界で有望である。
本稿では,監視モデルと非監視モデルの両方において,適切なバックグラウンドデータセットとランタイムトレードオフの選択を検討し,リアルタイム不正検出の領域における説明可能性について検討する。
論文 参考訳(メタデータ) (2021-05-13T14:12:02Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Counterfactual Explanations for Machine Learning: A Review [5.908471365011942]
機械学習における対実的説明に関する研究をレビューし、分類する。
機械学習における対実的説明可能性に対する現代のアプローチは、多くの国で確立された法的教義と結びついている。
論文 参考訳(メタデータ) (2020-10-20T20:08:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - One Explanation Does Not Fit All: The Promise of Interactive
Explanations for Machine Learning Transparency [21.58324172085553]
ブラックボックスシステムの透明性向上のための対話型機械学習の約束について論じる。
本稿では, 条件文を対話的に調整することで, 対実的説明をパーソナライズする方法を示す。
我々は、説明そのものとその内容の調整がより重要であると論じている。
論文 参考訳(メタデータ) (2020-01-27T13:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。