論文の概要: Explainable Machine Learning for Fraud Detection
- arxiv url: http://arxiv.org/abs/2105.06314v1
- Date: Thu, 13 May 2021 14:12:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-14 14:08:32.546955
- Title: Explainable Machine Learning for Fraud Detection
- Title(参考訳): 不正検出のための説明可能な機械学習
- Authors: Ismini Psychoula, Andreas Gutmann, Pradip Mainali, S. H. Lee, Paul
Dunphy, Fabien A. P. Petitcolas
- Abstract要約: 大規模なデータセットの処理をサポートする機械学習の応用は、金融サービスを含む多くの業界で有望である。
本稿では,監視モデルと非監視モデルの両方において,適切なバックグラウンドデータセットとランタイムトレードオフの選択を検討し,リアルタイム不正検出の領域における説明可能性について検討する。
- 参考スコア(独自算出の注目度): 0.47574189356217006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of machine learning to support the processing of large
datasets holds promise in many industries, including financial services.
However, practical issues for the full adoption of machine learning remain with
the focus being on understanding and being able to explain the decisions and
predictions made by complex models. In this paper, we explore explainability
methods in the domain of real-time fraud detection by investigating the
selection of appropriate background datasets and runtime trade-offs on both
supervised and unsupervised models.
- Abstract(参考訳): 大規模なデータセットの処理をサポートする機械学習の応用は、金融サービスを含む多くの業界で有望である。
しかし、機械学習をフルに採用するための実践的な問題は、複雑なモデルによってなされる決定や予測を理解し、説明できる点にある。
本稿では,教師付きモデルと教師なしモデルの両方において,適切な背景データセットと実行時のトレードオフを選択することにより,リアルタイム不正検出の領域における説明可能性について検討する。
関連論文リスト
- Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - Zero-knowledge Proof Meets Machine Learning in Verifiability: A Survey [19.70499936572449]
高品質なモデルは、効率的な最適化アルゴリズムだけでなく、膨大なデータと計算能力に基づいて構築されたトレーニングと学習プロセスにも依存する。
計算リソースの制限やデータプライバシの懸念など,さまざまな課題があるため,モデルを必要とするユーザは,マシンラーニングモデルをローカルにトレーニングすることはできないことが多い。
本稿では,ゼロ知識証明に基づく検証可能な機械学習(ZKP-VML)技術について包括的に調査する。
論文 参考訳(メタデータ) (2023-10-23T12:15:23Z) - Designing Explainable Predictive Machine Learning Artifacts: Methodology
and Practical Demonstration [0.0]
さまざまな業界の企業による意思決定者は、現代の機械学習アルゴリズムに基づくアプリケーションを採用することに、いまだに消極的だ。
我々はこの問題を、高度な機械学習アルゴリズムを「ブラックボックス」として広く支持されている見解に当てはめている。
本研究では,設計科学研究から方法論的知識を統一する手法を開発し,最先端の人工知能を用いた予測分析手法を提案する。
論文 参考訳(メタデータ) (2023-06-20T15:11:26Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
データ駆動最適化では、コンテキスト情報と機械学習アルゴリズムを使用して、不確実なパラメータによる決定問題の解決策を見つける。
本稿では,データ駆動型問題に対する解法を説明するために,対実的説明手法を提案する。
在庫管理やルーティングといった運用管理における重要な問題を説明することで,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-24T15:25:16Z) - Explainable Predictive Process Monitoring: A User Evaluation [62.41400549499849]
説明責任は、ブラックボックス機械学習アプローチの透明性の欠如によって動機付けられている。
予測プロセスモニタリングのための説明手法のユーザ評価を行う。
論文 参考訳(メタデータ) (2022-02-15T22:24:21Z) - Explainable AI Enabled Inspection of Business Process Prediction Models [2.5229940062544496]
本稿では,モデル説明を用いて,機械学習の予測によって適用された推論を解析する手法を提案する。
本手法の新たな貢献は,解釈可能な機械学習機構によって生成された説明と,過去のプロセス実行を記録するイベントログから抽出された文脈的,あるいはドメイン的知識の両方を活用するモデル検査の提案である。
論文 参考訳(メタデータ) (2021-07-16T06:51:18Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - Towards a Rigorous Evaluation of Explainability for Multivariate Time
Series [5.786452383826203]
本研究では,時系列予測問題におけるモデル非依存な説明可能性の実現と評価を行った。
その解決策は、販売契約を予測する時系列予測問題として問題をフレーミングすることであった。
LIMEとSHAPによる説明は、機械学習モデルによる予測を理解する上で、人間を大いに助けた。
論文 参考訳(メタデータ) (2021-04-06T17:16:36Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Monitoring and explainability of models in production [58.720142291102135]
デプロイされたモデルを監視することは、高品質の機械学習対応サービスの継続的なプロビジョニングに不可欠である。
これらの領域でソリューションの実装を成功させる上での課題を,オープンソースツールを使用した本番環境対応ソリューションの最近の例で論じる。
論文 参考訳(メタデータ) (2020-07-13T10:37:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。