Graph Neural Networks for Massive MIMO Detection
- URL: http://arxiv.org/abs/2007.05703v1
- Date: Sat, 11 Jul 2020 07:34:56 GMT
- Title: Graph Neural Networks for Massive MIMO Detection
- Authors: Andrea Scotti, Nima N. Moghadam, Dong Liu, Karl Gafvert, Jinliang
Huang
- Abstract summary: We learn a message-passing solution for the inference task of massive multiple-input multiple-output (MIMO) detection in wireless communication.
We adopt a graphical model based on the Markov random field (MRF) where belief propagation (BP) yields poor results when it assumes a uniform prior over the transmitted symbols.
- Score: 8.516590865173407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we innovately use graph neural networks (GNNs) to learn a
message-passing solution for the inference task of massive multiple
multiple-input multiple-output (MIMO) detection in wireless communication. We
adopt a graphical model based on the Markov random field (MRF) where belief
propagation (BP) yields poor results when it assumes a uniform prior over the
transmitted symbols. Numerical simulations show that, under the uniform prior
assumption, our GNN-based MIMO detection solution outperforms the minimum
mean-squared error (MMSE) baseline detector, in contrast to BP. Furthermore,
experiments demonstrate that the performance of the algorithm slightly improves
by incorporating MMSE information into the prior.
Related papers
- Deep Graph Unfolding for Beamforming in MU-MIMO Interference Networks [37.32261787567901]
We develop an efficient and near-optimal solution for beamforming in multi-user multiple-input-multiple-output single-hop wireless ad-hoc interference networks.
Inspired by the weighted minimum mean squared error (WMMSE) method, a classical approach to solving this problem, and the principle of algorithm unfolding, we present unfolded WMMSE for MU-MIMO.
arXiv Detail & Related papers (2023-04-02T04:34:00Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Edge Graph Neural Networks for Massive MIMO Detection [15.970981766599035]
Massive Multiple-Input Multiple-Out (MIMO) detection is an important problem in modern wireless communication systems.
While traditional Belief Propagation (BP) detectors perform poorly on loopy graphs, the recent Graph Neural Networks (GNNs)-based method can overcome the drawbacks of BP and achieve superior performance.
arXiv Detail & Related papers (2022-05-22T08:01:47Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Efficient power allocation using graph neural networks and deep
algorithm unfolding [40.78748956518785]
We study the problem of optimal power allocation in a single-hop ad hoc wireless network.
We propose a hybrid neural architecture inspired by the unfolding of the algorithmic weighted minimum mean squared error (WMMSE)
We show that UWMMSE achieves robustness comparable to that of WMMSE while significantly reducing the computational complexity.
arXiv Detail & Related papers (2020-11-18T05:28:24Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - A Modular Neural Network Based Deep Learning Approach for MIMO Signal
Detection [12.769554897969307]
artificial neural network (ANN) assisted multiple-input multiple-output (MIMO) signal detection can be modeled as ANN-assisted lossy vector quantization (VQ)
We propose a novel modular neural network based approach, termed MNNet, where the whole network is formed by a set of pre-defined ANN modules.
Our simulation results show that the MNNet approach largely improves the deep-learning capacity with near-optimal performance in various cases.
arXiv Detail & Related papers (2020-04-01T12:56:38Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.