論文の概要: Towards Robust Classification with Deep Generative Forests
- arxiv url: http://arxiv.org/abs/2007.05721v1
- Date: Sat, 11 Jul 2020 08:57:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 13:08:27.837321
- Title: Towards Robust Classification with Deep Generative Forests
- Title(参考訳): 深成林によるロバスト分類に向けて
- Authors: Alvaro H. C. Correia, Robert Peharz, Cassio de Campos
- Abstract要約: 決定木とランダムフォレストは最も広く使われている機械学習モデルの一つである。
主に識別モデルであるため、予測の不確実性を操作するための原則的な方法が欠けている。
我々はジェネレーティブフォレスト(GeF)を利用してランダムフォレストを特徴空間上の全関節分布を表す生成モデルに拡張する。
- 参考スコア(独自算出の注目度): 13.096855747795303
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Decision Trees and Random Forests are among the most widely used machine
learning models, and often achieve state-of-the-art performance in tabular,
domain-agnostic datasets. Nonetheless, being primarily discriminative models
they lack principled methods to manipulate the uncertainty of predictions. In
this paper, we exploit Generative Forests (GeFs), a recent class of deep
probabilistic models that addresses these issues by extending Random Forests to
generative models representing the full joint distribution over the feature
space. We demonstrate that GeFs are uncertainty-aware classifiers, capable of
measuring the robustness of each prediction as well as detecting
out-of-distribution samples.
- Abstract(参考訳): 決定木とランダムフォレストは、最も広く使われている機械学習モデルのひとつであり、表型でドメインに依存しないデータセットで最先端のパフォーマンスを達成することが多い。
それでも、主に識別モデルであるため、予測の不確実性を操作するための原則的な方法が欠けている。
本稿では,自然林を特徴空間上の全ジョイント分布を表す生成モデルに拡張することで,これらの問題に対処する最近の深層確率モデルであるgefs(generative forests)を活用した。
gefは不確かさを認識できる分類器であり、各予測のロバスト性を測定し、分散サンプルを検出することができる。
関連論文リスト
- Exogenous Randomness Empowering Random Forests [4.396860522241306]
平均二乗誤差(MSE)を個々の木と森林の両方に対して非漸近展開する。
以上の結果から,サブサンプリングは個々の樹木に比べて,ランダム林の偏りや分散を減少させることが明らかとなった。
ノイズ特性の存在は、ランダムな森林の性能を高める上で「祝福」として機能する。
論文 参考訳(メタデータ) (2024-11-12T05:06:10Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - Function-Space Regularization for Deep Bayesian Classification [33.63495888167032]
予測空間にディリクレを前もって適用し、近似関数空間変分推論を行う。
推論を適用することで、モデルアーキテクチャやサイズに影響を与えることなく、同じ関数空間を異なるモデルと組み合わせることができる。
論文 参考訳(メタデータ) (2023-07-12T10:17:54Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - FACT: High-Dimensional Random Forests Inference [4.941630596191806]
ランダム森林学習における個々の特徴の有用性の定量化は、その解釈可能性を大幅に向上させる。
既存の研究では、ランダム森林の特徴的重要度尺度が偏見の問題に悩まされていることが示されている。
本研究では, 自己正規化特徴-残留相関テスト(FACT)の枠組みを提案する。
論文 参考訳(メタデータ) (2022-07-04T19:05:08Z) - On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization [13.52611859628841]
予測不確実性推定の観点から,ランダム化木の様々なアンサンブルを再検討し,その挙動について検討する。
BwO林と呼ばれる無作為な樹木のアンサンブルを構築するための新しい手法を提案する。
実験により,既存の樹木モデルに対するBwO林の有効性と性能について様々な状況で検証した。
論文 参考訳(メタデータ) (2022-02-22T04:50:37Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
オープンセット認識のための条件付き確率生成モデル(CPGM)を提案する。
CPGMは未知のサンプルを検出できるが、異なる潜在特徴を条件付きガウス分布に近似させることで、既知のクラスを分類できる。
複数のベンチマークデータセットの実験結果から,提案手法がベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2020-08-12T06:23:49Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Joints in Random Forests [13.096855747795303]
決定木(DT)とランダムフォレスト(RF)は、日々の機械学習実践者やデータ科学者にとって重要な、強力な識別学習者およびツールである。
本稿では、DTとRFは確率回路との接続を描画することで、自然に生成モデルと解釈できることを示す。
この再解釈は特徴空間に完全結合分布を持たせ、生成決定木(GeDT)と生成森林(GeF)へと導く。
論文 参考訳(メタデータ) (2020-06-25T14:17:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。