論文の概要: Efficient resource management in UAVs for Visual Assistance
- arxiv url: http://arxiv.org/abs/2007.05854v3
- Date: Tue, 4 Aug 2020 17:12:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 13:27:06.299842
- Title: Efficient resource management in UAVs for Visual Assistance
- Title(参考訳): 視覚支援のためのUAVの効率的な資源管理
- Authors: Bapireddy Karri
- Abstract要約: 農業、軍事、災害管理、航空写真に無人航空機(UAV)を使うことへの関心が高まっている。
リアルタイムで視覚支援タスクにUAVを使用する際の大きな課題の1つは、メモリ使用量と消費電力の管理である。
本稿では,UAVハードウェアにおける物体追跡や物体検出などの画像処理タスクをリアルタイムに最適化する新しい手法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is an increased interest in the use of Unmanned Aerial Vehicles (UAVs)
for agriculture, military, disaster management and aerial photography around
the world. UAVs are scalable, flexible and are useful in various environments
where direct human intervention is difficult. In general, the use of UAVs with
cameras mounted to them has increased in number due to their wide range of
applications in real life scenarios. With the advent of deep learning models in
computer vision many models have shown great success in visual tasks. But most
of evaluation models are done on high end CPUs and GPUs. One of major
challenges in using UAVs for Visual Assistance tasks in real time is managing
the memory usage and power consumption of the these tasks which are
computationally intensive and are difficult to be performed on low end
processor board of the UAV. This projects describes a novel method to optimize
the general image processing tasks like object tracking and object detection
for UAV hardware in real time scenarios without affecting the flight time and
not tampering the latency and accuracy of these models.
- Abstract(参考訳): 世界中の農業、軍事、災害管理、航空写真に無人航空機(UAV)を使うことへの関心が高まっている。
UAVはスケーラブルで柔軟性があり、直接の介入が難しい様々な環境で有用である。
一般に、カメラを装着したUAVの使用は、現実のシナリオにおける幅広い応用のために、数が増えてきた。
コンピュータビジョンにおけるディープラーニングモデルの出現により、多くのモデルが視覚タスクで大きな成功を収めている。
しかし、ほとんどの評価モデルはハイエンドのCPUとGPUで行われます。
視覚支援タスクにUAVをリアルタイムに使用する際の大きな課題の1つは、これらのタスクのメモリ使用量と消費電力の管理であり、それらは計算集約的で、UAVのローエンドプロセッサボード上では実行が困難である。
本稿では,UAVハードウェアにおける物体追跡や物体検出などの一般的な画像処理タスクを,飛行時間に影響を与えることなく,遅延や精度を損なうことなく,リアルタイムシナリオで最適化する手法について述べる。
関連論文リスト
- UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection [0.03464344220266879]
パッチ強度収束(Patch Intensity Convergence、PIC)技術は、手動ラベリングなしでUAV検出のための高忠実なバウンディングボックスを生成する。
この技術は、UAV検出に特化した専用データベースであるUAVDBの基礎となる。
我々は,最先端(SOTA)YOLO系列検出器を用いてUAVDBをベンチマークし,総合的な性能解析を行った。
論文 参考訳(メタデータ) (2024-09-09T13:27:53Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
無人航空機(UAV)は輸送、監視、軍事など多くの地域で広く使われている。
従来は、UAVの先行情報が常に提供されていた追跡問題として、このようなアンチUAVタスクを単純化していた。
本稿では,従来のUAV情報を含まない複雑な場面において,UAVの認識を特徴とする新しい実用的対UAV問題を初めて定式化する。
論文 参考訳(メタデータ) (2023-06-27T19:30:23Z) - Learning to Compress Unmanned Aerial Vehicle (UAV) Captured Video:
Benchmark and Analysis [54.07535860237662]
本稿では,UAVビデオ符号化学習のための新しいタスクを提案し,そのようなタスクに対する包括的で体系的なベンチマークを構築する。
このベンチマークは、ドローンプラットフォームにおけるビデオコーディングの研究と開発を加速させるものと期待されている。
論文 参考訳(メタデータ) (2023-01-15T15:18:02Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - SeaDroneSim: Simulation of Aerial Images for Detection of Objects Above
Water [4.625920569634467]
無人航空機(UAV)はその高速で多用途で知られている。
我々は、フォトリアリスティックな空中画像データセットを作成するために使用できる新しいベンチマークスイート、textittextbfSeaDroneSimを提案する。
実地画像に71mAPを印加し,BlueROV検出の実現可能性について検討した。
論文 参考訳(メタデータ) (2022-10-26T21:50:50Z) - Deep Reinforcement Learning for Task Offloading in UAV-Aided Smart Farm
Networks [3.6118662460334527]
我々は、この多目的問題を解決するために、Deep Q-Learning(DQL)アプローチを導入する。
提案手法は,UAVの残量と期限違反率に関して,同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-09-15T15:29:57Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
本稿では,緊急対応・監視用uavの航空機画像の効率的な分類について述べる。
緊急対応アプリケーションのための専用空中画像データベースを導入し、既存のアプローチの比較分析を行う。
マルチレゾリューション機能を処理するために,アトラス畳み込みに基づく軽量畳み込みニューラルネットワークアーキテクチャが提案されている。
論文 参考訳(メタデータ) (2021-04-28T20:24:10Z) - UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-identification [21.48667873335246]
近年のディープラーニング開発により、視覚ベースの対UAVシステムは単一のカメラでUAVを検出し、追跡することができる。
単一のカメラのカバー範囲は限られており、カメラ間のUAVにマッチするマルチカメラ構成が必要である。
我々は,この新興地域での機械学習ソリューションの開発を容易にする,UAV-reIDという新しいUAV再識別データセットを提案する。
論文 参考訳(メタデータ) (2021-04-13T14:13:09Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。