論文の概要: UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection
- arxiv url: http://arxiv.org/abs/2409.06490v3
- Date: Tue, 8 Oct 2024 09:49:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 22:16:23.222641
- Title: UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection
- Title(参考訳): UAVDB: UAV検出のための軌道誘導適応バウンディングボックス
- Authors: Yu-Hsi Chen,
- Abstract要約: パッチ強度収束(Patch Intensity Convergence、PIC)技術は、手動ラベリングなしでUAV検出のための高忠実なバウンディングボックスを生成する。
この技術は、UAV検出に特化した専用データベースであるUAVDBの基礎となる。
我々は,最先端(SOTA)YOLO系列検出器を用いてUAVDBをベンチマークし,総合的な性能解析を行った。
- 参考スコア(独自算出の注目度): 0.03464344220266879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of drone technology has made accurate Unmanned Aerial Vehicle (UAV) detection essential for surveillance, security, and airspace management. This paper presents a novel trajectory-guided approach, the Patch Intensity Convergence (PIC) technique, which generates high-fidelity bounding boxes for UAV detection without manual labeling. This technique forms the foundation of UAVDB, a dedicated database designed specifically for UAV detection. Unlike datasets that often focus on large UAVs or simple backgrounds, UAVDB utilizes high-resolution RGB video to capture UAVs at various scales, from hundreds of pixels to near-single-digit sizes. This extensive scale variation enables robust evaluation of detection algorithms under diverse conditions. Using the PIC technique, bounding boxes can be efficiently generated from trajectory or position data. We benchmark UAVDB using state-of-the-art (SOTA) YOLO series detectors, providing a comprehensive performance analysis. Our results demonstrate UAVDB's potential as a critical resource for advancing UAV detection, particularly in high-resolution and long-distance tracking scenarios.
- Abstract(参考訳): ドローン技術の急速な進歩により、無人航空機(UAV)の正確な検出は、監視、セキュリティ、空域管理に欠かせないものとなった。
本稿では,手動ラベリングを使わずにUAV検出のための高忠実なバウンディングボックスを生成する,新しいトラジェクトリ誘導手法であるPatch Intensity Convergence(PIC)技術を提案する。
この技術は、UAV検出に特化した専用データベースであるUAVDBの基礎となる。
多くの場合、大きなUAVや単純な背景にフォーカスするデータセットとは異なり、UAVDBは高解像度のRGBビデオを使用して、数百ピクセルからほぼ1桁の大きさのUAVをさまざまなスケールでキャプチャする。
この大規模な変動は、様々な条件下で検出アルゴリズムの堅牢な評価を可能にする。
PIC技術を用いることで、軌道データや位置データからバウンディングボックスを効率的に生成することができる。
我々は,最先端(SOTA)YOLO系列検出器を用いてUAVDBをベンチマークし,総合的な性能解析を行った。
以上の結果から,UAVDBは特に高分解能・長距離追跡のシナリオにおいて,UAVの検出を促進する重要な資源となる可能性が示唆された。
関連論文リスト
- Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
無人航空機(UAV)は輸送、監視、軍事など多くの地域で広く使われている。
従来は、UAVの先行情報が常に提供されていた追跡問題として、このようなアンチUAVタスクを単純化していた。
本稿では,従来のUAV情報を含まない複雑な場面において,UAVの認識を特徴とする新しい実用的対UAV問題を初めて定式化する。
論文 参考訳(メタデータ) (2023-06-27T19:30:23Z) - Investigation of UAV Detection in Images with Complex Backgrounds and
Rainy Artifacts [20.20609511526255]
UAV検出のための視覚に基づく物体検出法が開発されている。
複雑な背景と雨のような気象要素を持つ画像におけるUAV検出は、まだ合理的に研究されていない。
この研究は、最先端のオブジェクト検出モデルのベンチマークにも重点を置いている。
論文 参考訳(メタデータ) (2023-05-25T19:54:33Z) - Learning to Compress Unmanned Aerial Vehicle (UAV) Captured Video:
Benchmark and Analysis [54.07535860237662]
本稿では,UAVビデオ符号化学習のための新しいタスクを提案し,そのようなタスクに対する包括的で体系的なベンチマークを構築する。
このベンチマークは、ドローンプラットフォームにおけるビデオコーディングの研究と開発を加速させるものと期待されている。
論文 参考訳(メタデータ) (2023-01-15T15:18:02Z) - Vision-based Anti-UAV Detection and Tracking [18.307952561941942]
無人航空機(UAV)は様々な分野で広く使われており、セキュリティやプライバシーへの侵入が社会の関心を喚起している。
本稿では,ダリアン工科大学アンチUAVデータセット,DUTアンチUAVという可視光モードデータセットを提案する。
検出データセットには、合計1万の画像と、短期および長期のシーケンスを含む20のビデオの追跡データセットが含まれている。
論文 参考訳(メタデータ) (2022-05-22T15:21:45Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-identification [21.48667873335246]
近年のディープラーニング開発により、視覚ベースの対UAVシステムは単一のカメラでUAVを検出し、追跡することができる。
単一のカメラのカバー範囲は限られており、カメラ間のUAVにマッチするマルチカメラ構成が必要である。
我々は,この新興地域での機械学習ソリューションの開発を容易にする,UAV-reIDという新しいUAV再識別データセットを提案する。
論文 参考訳(メタデータ) (2021-04-13T14:13:09Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。