論文の概要: UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection
- arxiv url: http://arxiv.org/abs/2409.06490v3
- Date: Tue, 8 Oct 2024 09:49:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 22:16:23.222641
- Title: UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection
- Title(参考訳): UAVDB: UAV検出のための軌道誘導適応バウンディングボックス
- Authors: Yu-Hsi Chen,
- Abstract要約: パッチ強度収束(Patch Intensity Convergence、PIC)技術は、手動ラベリングなしでUAV検出のための高忠実なバウンディングボックスを生成する。
この技術は、UAV検出に特化した専用データベースであるUAVDBの基礎となる。
我々は,最先端(SOTA)YOLO系列検出器を用いてUAVDBをベンチマークし,総合的な性能解析を行った。
- 参考スコア(独自算出の注目度): 0.03464344220266879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of drone technology has made accurate Unmanned Aerial Vehicle (UAV) detection essential for surveillance, security, and airspace management. This paper presents a novel trajectory-guided approach, the Patch Intensity Convergence (PIC) technique, which generates high-fidelity bounding boxes for UAV detection without manual labeling. This technique forms the foundation of UAVDB, a dedicated database designed specifically for UAV detection. Unlike datasets that often focus on large UAVs or simple backgrounds, UAVDB utilizes high-resolution RGB video to capture UAVs at various scales, from hundreds of pixels to near-single-digit sizes. This extensive scale variation enables robust evaluation of detection algorithms under diverse conditions. Using the PIC technique, bounding boxes can be efficiently generated from trajectory or position data. We benchmark UAVDB using state-of-the-art (SOTA) YOLO series detectors, providing a comprehensive performance analysis. Our results demonstrate UAVDB's potential as a critical resource for advancing UAV detection, particularly in high-resolution and long-distance tracking scenarios.
- Abstract(参考訳): ドローン技術の急速な進歩により、無人航空機(UAV)の正確な検出は、監視、セキュリティ、空域管理に欠かせないものとなった。
本稿では,手動ラベリングを使わずにUAV検出のための高忠実なバウンディングボックスを生成する,新しいトラジェクトリ誘導手法であるPatch Intensity Convergence(PIC)技術を提案する。
この技術は、UAV検出に特化した専用データベースであるUAVDBの基礎となる。
多くの場合、大きなUAVや単純な背景にフォーカスするデータセットとは異なり、UAVDBは高解像度のRGBビデオを使用して、数百ピクセルからほぼ1桁の大きさのUAVをさまざまなスケールでキャプチャする。
この大規模な変動は、様々な条件下で検出アルゴリズムの堅牢な評価を可能にする。
PIC技術を用いることで、軌道データや位置データからバウンディングボックスを効率的に生成することができる。
我々は,最先端(SOTA)YOLO系列検出器を用いてUAVDBをベンチマークし,総合的な性能解析を行った。
以上の結果から,UAVDBは特に高分解能・長距離追跡のシナリオにおいて,UAVの検出を促進する重要な資源となる可能性が示唆された。
関連論文リスト
- UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Imagery [14.599037804047724]
無人航空機物体検出(UAV-OD)は様々なシナリオで広く用いられている。
既存のUAV-ODアルゴリズムの多くは手動で設計したコンポーネントに依存しており、広範囲なチューニングを必要とする。
本稿では,UAV画像に適した効率的な検出変換器(DETR)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-03T15:11:14Z) - Unsupervised UAV 3D Trajectories Estimation with Sparse Point Clouds [18.48877348628721]
本稿では,時空間シーケンス処理を用いたコスト効率,教師なしUAV検出手法を提案する。
CVPR 2024 UG2+ Challengeの4位にランクインした。
我々は、研究コミュニティ.com/lianghanfang/UnLiDAR-UAV-Estのすべての設計、コード、サンプルデータをオープンソース化する予定です。
論文 参考訳(メタデータ) (2024-12-17T09:30:31Z) - SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
本稿では,無人航空機(UAV)映像における多物体追跡の問題に対処する。
交通監視システムや警察によるリアルタイム容疑者追跡など、様々なUAVアプリケーションにおいて重要な役割を果たしている。
低信頼度検出から対象物体の追跡を開始する新しい追跡戦略を提案する。
論文 参考訳(メタデータ) (2024-10-26T05:09:20Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T12:36:08Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV)は、自律走行車(AV)における視覚知覚のための最も広く使われているシーンの1つである。
近年の拡散法は、視覚知覚のための不確実性モデリングに有望なアプローチを提供するが、BEVの広い範囲において、小さな物体を効果的に検出することができない。
本稿では,BEVにおける拡散パラダイムと最先端の3Dオブジェクト検出器を組み合わせることで,この問題に対処する。
論文 参考訳(メタデータ) (2023-12-18T09:52:14Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
無人航空機(UAV)は輸送、監視、軍事など多くの地域で広く使われている。
従来は、UAVの先行情報が常に提供されていた追跡問題として、このようなアンチUAVタスクを単純化していた。
本稿では,従来のUAV情報を含まない複雑な場面において,UAVの認識を特徴とする新しい実用的対UAV問題を初めて定式化する。
論文 参考訳(メタデータ) (2023-06-27T19:30:23Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。