論文の概要: Deep Network Interpolation for Accelerated Parallel MR Image
Reconstruction
- arxiv url: http://arxiv.org/abs/2007.05993v1
- Date: Sun, 12 Jul 2020 13:58:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 06:04:38.923498
- Title: Deep Network Interpolation for Accelerated Parallel MR Image
Reconstruction
- Title(参考訳): 並列MR画像再構成のためのディープネットワーク補間
- Authors: Chen Qin, Jo Schlemper, Kerstin Hammernik, Jinming Duan, Ronald M
Summers, and Daniel Rueckert
- Abstract要約: 並列MR画像再構成を高速化するためのディープネットワーク戦略を提案する。
特に、L1とSSIMの損失を持つアンロールスキームで定式化されたソースモデルと、逆損失で訓練されたソースモデルとのパラメータ空間におけるネットワークについて検討する。
- 参考スコア(独自算出の注目度): 14.151673559127753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a deep network interpolation strategy for accelerated parallel MR
image reconstruction. In particular, we examine the network interpolation in
parameter space between a source model that is formulated in an unrolled scheme
with L1 and SSIM losses and its counterpart that is trained with an adversarial
loss. We show that by interpolating between the two different models of the
same network structure, the new interpolated network can model a trade-off
between perceptual quality and fidelity.
- Abstract(参考訳): 高速並列MR画像再構成のためのディープネットワーク補間戦略を提案する。
特に,L1 と SSIM の損失を持つ非ロール型スキームで定式化されたソースモデルと,逆損失で訓練されたソースモデルとのパラメータ空間におけるネットワーク補間について検討する。
同一ネットワーク構造の2つの異なるモデル間を補間することにより、新しい補間ネットワークは知覚品質と忠実性のトレードオフをモデル化できることを示す。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Backpropagation on Dynamical Networks [0.0]
本稿では,リカレントニューラルネットワークのトレーニングによく使用されるBPTTアルゴリズムに基づくネットワーク推論手法を提案する。
局所ノードダイナミクスの近似は、まずニューラルネットワークを用いて構築される。
得られた局所モデルと重み付けによるフリーラン予測性能は、真のシステムに匹敵することがわかった。
論文 参考訳(メタデータ) (2022-07-07T05:22:44Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
畳み込みニューラルネットワーク(CNN)の設計の最近の進歩は、画像超解像(SR)の性能を大幅に向上させた。
残差ブロック内の一連の密接な接続を含む単位上に構築されたスケールリカレントSRアーキテクチャを提案する(Residual Dense Blocks (RDBs))。
我々のスケールリカレント設計は、現在の最先端のアプローチに比べてパラメトリックに効率的でありながら、より高いスケール要因の競合性能を提供する。
論文 参考訳(メタデータ) (2022-01-28T09:18:43Z) - PR-RRN: Pairwise-Regularized Residual-Recursive Networks for Non-rigid
Structure-from-Motion [58.75694870260649]
PR-RRNは、非剛性構造移動のための新しいニューラルネットワークベースの手法である。
再建をさらに規則化するための2つの新しいペアワイズ正規化を提案する。
提案手法は,CMU MOCAPとPASCAL3D+データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-08-17T08:39:02Z) - Parallel mesh reconstruction streams for pose estimation of interacting
hands [2.0305676256390934]
単一のRGB画像から手動ポーズ推定を行うマルチストリーム3Dメッシュ再構成ネットワーク(MSMR-Net)を提案する。
我々のモデルは、画像エンコーダと、連結グラフ畳み込み層からなるメッシュ畳み込みデコーダからなる。
論文 参考訳(メタデータ) (2021-04-25T10:14:15Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
本稿では,ロバスト主成分分析(RPCA)問題に対するディープアンフォールディングに基づくネットワーク設計を提案する。
既存の設計とは異なり,本手法は連続するビデオフレームのスパース表現間の時間的相関をモデル化することに焦点を当てている。
移動MNISTデータセットを用いた実験により、提案したネットワークは、ビデオフォアグラウンドとバックグラウンドの分離作業において、最近提案された最先端のRPCAネットワークより優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T11:40:09Z) - Interpolation between Residual and Non-Residual Networks [24.690238357686134]
ダンピング項を追加することで,新しいODEモデルを提案する。
提案モデルでは係数を調整してResNetとCNNの両方を復元可能であることを示す。
複数の画像分類ベンチマーク実験により,提案手法はResNetとResNeXtの精度を大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-06-10T09:36:38Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。