VINNAS: Variational Inference-based Neural Network Architecture Search
- URL: http://arxiv.org/abs/2007.06103v5
- Date: Thu, 14 Jan 2021 21:26:57 GMT
- Title: VINNAS: Variational Inference-based Neural Network Architecture Search
- Authors: Martin Ferianc, Hongxiang Fan and Miguel Rodrigues
- Abstract summary: We present a differentiable variational inference-based NAS method for searching sparse convolutional neural networks.
Our method finds diverse network cells, while showing state-of-the-art accuracy with up to almost 2 times fewer non-zero parameters.
- Score: 2.685668802278155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, neural architecture search (NAS) has received intensive
scientific and industrial interest due to its capability of finding a neural
architecture with high accuracy for various artificial intelligence tasks such
as image classification or object detection. In particular, gradient-based NAS
approaches have become one of the more popular approaches thanks to their
computational efficiency during the search. However, these methods often
experience a mode collapse, where the quality of the found architectures is
poor due to the algorithm resorting to choosing a single operation type for the
entire network, or stagnating at a local minima for various datasets or search
spaces.
To address these defects, we present a differentiable variational
inference-based NAS method for searching sparse convolutional neural networks.
Our approach finds the optimal neural architecture by dropping out candidate
operations in an over-parameterised supergraph using variational dropout with
automatic relevance determination prior, which makes the algorithm gradually
remove unnecessary operations and connections without risking mode collapse.
The evaluation is conducted through searching two types of convolutional cells
that shape the neural network for classifying different image datasets. Our
method finds diverse network cells, while showing state-of-the-art accuracy
with up to almost 2 times fewer non-zero parameters.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - NAS-ASDet: An Adaptive Design Method for Surface Defect Detection
Network using Neural Architecture Search [5.640706784987607]
We propose a new method called NAS-ASDet to adaptively design network for surface defect detection.
First, a refined and industry-appropriate search space that can adaptively adjust the feature distribution is designed.
Then, a progressive search strategy with a deep supervision mechanism is used to explore the search space faster and better.
arXiv Detail & Related papers (2023-11-18T03:15:45Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Precision Machine Learning [5.15188009671301]
We compare various function approximation methods and study how they scale with increasing parameters and data.
We find that neural networks can often outperform classical approximation methods on high-dimensional examples.
We develop training tricks which enable us to train neural networks to extremely low loss, close to the limits allowed by numerical precision.
arXiv Detail & Related papers (2022-10-24T17:58:30Z) - BayesFT: Bayesian Optimization for Fault Tolerant Neural Network
Architecture [8.005491953251541]
We propose a novel Bayesian optimization method for fault tolerant neural network architecture (BayesFT)
Our framework has outperformed the state-of-the-art methods by up to 10 times on various tasks, such as image classification and object detection.
arXiv Detail & Related papers (2022-09-30T20:13:05Z) - D-DARTS: Distributed Differentiable Architecture Search [75.12821786565318]
Differentiable ARchiTecture Search (DARTS) is one of the most trending Neural Architecture Search (NAS) methods.
We propose D-DARTS, a novel solution that addresses this problem by nesting several neural networks at cell-level.
arXiv Detail & Related papers (2021-08-20T09:07:01Z) - Differentiable Neural Architecture Learning for Efficient Neural Network
Design [31.23038136038325]
We introduce a novel emph architecture parameterisation based on scaled sigmoid function.
We then propose a general emphiable Neural Architecture Learning (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks.
arXiv Detail & Related papers (2021-03-03T02:03:08Z) - Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel
Segmentation Using a Genetic Algorithm [2.6629444004809826]
Genetic U-Net is proposed to generate a U-shaped convolutional neural network (CNN) that can achieve better retinal vessel segmentation but with fewer architecture-based parameters.
The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular.
arXiv Detail & Related papers (2020-10-29T13:31:36Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.