論文の概要: Neural disambiguation of lemma and part of speech in morphologically
rich languages
- arxiv url: http://arxiv.org/abs/2007.06104v1
- Date: Sun, 12 Jul 2020 21:48:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 05:47:13.320748
- Title: Neural disambiguation of lemma and part of speech in morphologically
rich languages
- Title(参考訳): 形態学的に豊かな言語における補題と発話の一部の神経的曖昧さ
- Authors: Jos\'e Mar\'ia Hoya Quecedo, Maximilian W. Koppatz, Giacomo Furlan,
Roman Yangarber
- Abstract要約: 形態的に豊かな言語における不明瞭な単語の補題と発話の一部を曖昧にすることの問題点を考察する。
そこで本稿では, テキストの未注釈コーパスと形態素解析を用いて, 文脈におけるあいまいな単語の曖昧さを解消する手法を提案する。
- 参考スコア(独自算出の注目度): 0.6346772579930928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of disambiguating the lemma and part of speech of
ambiguous words in morphologically rich languages. We propose a method for
disambiguating ambiguous words in context, using a large un-annotated corpus of
text, and a morphological analyser -- with no manual disambiguation or data
annotation. We assume that the morphological analyser produces multiple
analyses for ambiguous words. The idea is to train recurrent neural networks on
the output that the morphological analyser produces for unambiguous words. We
present performance on POS and lemma disambiguation that reaches or surpasses
the state of the art -- including supervised models -- using no manually
annotated data. We evaluate the method on several morphologically rich
languages.
- Abstract(参考訳): 形態的に豊かな言語における不明瞭な単語の補題と発話の一部を曖昧にする問題を考える。
We propose a method for disambiguating ambiguous words in context, using a large un-annotated corpus of text, and a morphological analyser -- with no manual disambiguation or data annotation. We assume that the morphological analyser produces multiple analyses for ambiguous words. The idea is to train recurrent neural networks on the output that the morphological analyser produces for unambiguous words. We present performance on POS and lemma disambiguation that reaches or surpasses the state of the art -- including supervised models -- using no manually annotated data.
いくつかの形態学的に豊かな言語でその手法を評価する。
関連論文リスト
- UzMorphAnalyser: A Morphological Analysis Model for the Uzbek Language Using Inflectional Endings [0.0]
接尾辞は、単語に付加的な意味と文法的機能を加えることによって、単語の形態解析において重要な役割を果たす。
本稿では,ユーズベク語の形態解析のモデル化について述べる。
提案されたモデルに基づく開発ツールは、WebベースのアプリケーションとオープンソースのPythonライブラリとして利用できる。
論文 参考訳(メタデータ) (2024-05-23T05:06:55Z) - On the Role of Morphological Information for Contextual Lemmatization [7.106986689736827]
6言語における文脈補間器の開発における形態情報の役割について検討する。
バスク語、トルコ語、ロシア語、チェコ語、スペイン語、英語。
実験により、ドメイン外で最高のレマタイザは、単純な UPOS タグを使ったものか、形態学なしで訓練されたものであることが示唆されている。
論文 参考訳(メタデータ) (2023-02-01T12:47:09Z) - Quantifying Synthesis and Fusion and their Impact on Machine Translation [79.61874492642691]
自然言語処理(NLP)では、一般に、融合や凝集のような厳密な形態を持つ言語全体をラベル付けする。
本研究では,単語とセグメントレベルで形態型を定量化することにより,そのようなクレームの剛性を低減することを提案する。
本研究では, 英語, ドイツ語, トルコ語の非教師なし・教師付き形態素分割法について検討する一方, 融合ではスペイン語を用いた半自動手法を提案する。
そして、機械翻訳品質と単語(名詞と動詞)における合成・融合の程度との関係を分析する。
論文 参考訳(メタデータ) (2022-05-06T17:04:58Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
形態的に豊かな言語は機械翻訳に困難をもたらす。
多数の異なる屈折する単語曲面は、より大きな語彙を必要とする。
いくつかの頻度の低い用語は、通常、トレーニングコーパスには現れない。
言語的合意は、出力文中の屈折語形間の文法的カテゴリを正しく一致させる必要がある。
論文 参考訳(メタデータ) (2022-03-25T10:13:20Z) - How Suitable Are Subword Segmentation Strategies for Translating
Non-Concatenative Morphology? [26.71325671956197]
各種形態素現象のセグメンテーション戦略を評価するためのテストスイートを設計する。
形態学的に複雑な表面表現を解析・生成する学習は依然として困難である。
論文 参考訳(メタデータ) (2021-09-02T17:23:21Z) - Morphological Disambiguation from Stemming Data [1.2183405753834562]
形態学的に豊かな言語であるKinyarwandaは、現在、自動形態素解析のためのツールを欠いている。
我々は、クラウドソーシングを通じて収集された新しいスリーミングデータセットから、Kinyarwandaの動詞形を形態的に曖昧にすることを学ぶ。
本実験により, 茎の屈折特性と形態素関連規則が, 曖昧さの最も識別的な特徴であることが判明した。
論文 参考訳(メタデータ) (2020-11-11T01:44:09Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z) - Evaluating Transformer-Based Multilingual Text Classification [55.53547556060537]
我々は,NLPツールが構文的・形態学的に異なる言語で不平等に機能すると主張している。
実験研究を支援するために,単語順と形態的類似度指標を算出した。
論文 参考訳(メタデータ) (2020-04-29T03:34:53Z) - Comparison of Turkish Word Representations Trained on Different
Morphological Forms [0.0]
本研究では形態学的に異なる形態のテキストをトルコ語の形態学的に豊かな言語で作成する。
我々は,補題と接尾辞を異なる方法で扱うテキスト上で, word2vec モデルを訓練した。
また、サブワードモデルであるfastTextを訓練し、単語アナロジー、テキスト分類、感情分析、言語モデルタスクへの埋め込みを比較した。
論文 参考訳(メタデータ) (2020-02-13T10:09:31Z) - A Simple Joint Model for Improved Contextual Neural Lemmatization [60.802451210656805]
本稿では,20言語で最先端の成果を得られる,単純結合型ニューラルモデルを提案する。
本論文では,トレーニングと復号化に加えて,本モデルについて述べる。
論文 参考訳(メタデータ) (2019-04-04T02:03:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。