論文の概要: A Simple Joint Model for Improved Contextual Neural Lemmatization
- arxiv url: http://arxiv.org/abs/1904.02306v5
- Date: Tue, 28 May 2024 14:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 05:10:10.922903
- Title: A Simple Joint Model for Improved Contextual Neural Lemmatization
- Title(参考訳): 文脈的ニューラル・レマタイゼーション改善のための簡易関節モデル
- Authors: Chaitanya Malaviya, Shijie Wu, Ryan Cotterell,
- Abstract要約: 本稿では,20言語で最先端の成果を得られる,単純結合型ニューラルモデルを提案する。
本論文では,トレーニングと復号化に加えて,本モデルについて述べる。
- 参考スコア(独自算出の注目度): 60.802451210656805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: English verbs have multiple forms. For instance, talk may also appear as talks, talked or talking, depending on the context. The NLP task of lemmatization seeks to map these diverse forms back to a canonical one, known as the lemma. We present a simple joint neural model for lemmatization and morphological tagging that achieves state-of-the-art results on 20 languages from the Universal Dependencies corpora. Our paper describes the model in addition to training and decoding procedures. Error analysis indicates that joint morphological tagging and lemmatization is especially helpful in low-resource lemmatization and languages that display a larger degree of morphological complexity. Code and pre-trained models are available at https://sigmorphon.github.io/sharedtasks/2019/task2/.
- Abstract(参考訳): 英語の動詞には複数の形がある。
例えば、会話は、文脈によっては、話す、話す、話すようにも見えます。
補題化のNLPタスクは、これらの多様な形式を補題として知られる正準形式にマッピングしようとする。
ユニバーサル依存コーパスから20言語について, 最新の結果が得られる, 補題化と形態的タグ付けのための単純なジョイントニューラルモデルを提案する。
本論文では,トレーニングと復号化に加えて,本モデルについて述べる。
誤り解析は, 共同形態的タグ付けとレムマタイズが, より大規模な形態的複雑性を示す低リソースのレンマタイズや言語に特に有用であることを示している。
コードと事前トレーニングされたモデルは、https://sigmorphon.github.io/sharedtasks/2019/task2/で利用可能だ。
関連論文リスト
- In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
我々は、文脈言語学習(ICLL)において、私たちが用語する新しいモデル問題群(英語版)のレンズを通してICLを研究する。
我々は,通常のICLLタスクにおいて,多種多様なニューラルシーケンスモデルを評価する。
論文 参考訳(メタデータ) (2024-01-23T18:59:21Z) - Morphological Inflection with Phonological Features [7.245355976804435]
本研究は,形態素モデルがサブキャラクタの音韻的特徴にアクセスできる様々な方法で得られる性能への影響について検討する。
我々は、浅いグラフ-音素マッピングを持つ言語に対する言語固有の文法を用いて、標準グラフデータから音素データを抽出する。
論文 参考訳(メタデータ) (2023-06-21T21:34:39Z) - On the Role of Morphological Information for Contextual Lemmatization [7.106986689736827]
6言語における文脈補間器の開発における形態情報の役割について検討する。
バスク語、トルコ語、ロシア語、チェコ語、スペイン語、英語。
実験により、ドメイン外で最高のレマタイザは、単純な UPOS タグを使ったものか、形態学なしで訓練されたものであることが示唆されている。
論文 参考訳(メタデータ) (2023-02-01T12:47:09Z) - Is neural language acquisition similar to natural? A chronological
probing study [0.0515648410037406]
本稿では,MultiBERTやT5といったトランスフォーマー英語モデルの時系列探索について述べる。
コーパスの学習過程において,モデルが学習した言語に関する情報を比較した。
その結果,1)訓練の初期段階に言語情報を取得すること,2)両言語モデルが様々な言語レベルから様々な特徴を捉える能力を示した。
論文 参考訳(メタデータ) (2022-07-01T17:24:11Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
形態的に豊かな言語は機械翻訳に困難をもたらす。
多数の異なる屈折する単語曲面は、より大きな語彙を必要とする。
いくつかの頻度の低い用語は、通常、トレーニングコーパスには現れない。
言語的合意は、出力文中の屈折語形間の文法的カテゴリを正しく一致させる必要がある。
論文 参考訳(メタデータ) (2022-03-25T10:13:20Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - Unnatural Language Inference [48.45003475966808]
我々は、RoBERTaやBARTのような最先端のNLIモデルは、ランダムに並べ替えられた単語の例に不変であり、時にはよりよく機能することさえあります。
我々の発見は、自然言語理解モデルと、その進捗を測定するために使われるタスクが、本当に人間のような構文理解を必要とするという考えに疑問を投げかけている。
論文 参考訳(メタデータ) (2020-12-30T20:40:48Z) - Modelling Verbal Morphology in Nen [4.6877729174041605]
我々は現在最先端の機械学習モデルを用いて形態的回帰を行い、Nen言語形態をモデル化する。
実験結果から, 動詞型の異なる分布は, 精度の異なるデータ構成に敏感であることがわかった。
また、同期のケーススタディを通じて、トレーニングデータから推測できるパターンの種類についても示す。
論文 参考訳(メタデータ) (2020-11-30T01:22:05Z) - Neural Polysynthetic Language Modelling [15.257624461339867]
高リソース言語では、一般的なアプローチは、共通の根の形態的固有の変種を、完全に独立した単語タイプとして扱うことである。
これは、根あたりの屈折が限られており、大多数が十分な大きさのコーパスに現れると仮定する。
4つの多義語に対する言語モデリング,機械翻訳,テキスト予測の現状について検討する。
論文 参考訳(メタデータ) (2020-05-11T22:57:04Z) - Cross-lingual, Character-Level Neural Morphological Tagging [57.0020906265213]
文字レベルのリカレントなニューラルタグをトレーニングし、高リソース言語と低リソース言語を併用して形態的タグ付けを予測する。
複数の関連言語間の共同文字表現の学習は、高リソース言語から低リソース言語への知識伝達を成功させ、モノリンガルモデルの精度を最大30%向上させる。
論文 参考訳(メタデータ) (2017-08-30T08:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。