論文の概要: An Adversarial Approach to Structural Estimation
- arxiv url: http://arxiv.org/abs/2007.06169v3
- Date: Tue, 1 Nov 2022 02:49:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 23:49:32.998657
- Title: An Adversarial Approach to Structural Estimation
- Title(参考訳): 構造推定への敵対的アプローチ
- Authors: Tetsuya Kaji, Elena Manresa, Guillaume Pouliot
- Abstract要約: 構造モデルに対する新しいシミュレーションに基づく逆推定法を提案する。
十分リッチな判別器により、逆数推定器は正しい仕様の下でパラメトリック効率を得ることを示す。
本手法を高齢者の貯蓄決定モデルに適用し,富裕層における貯蓄の重要源として探究動機を明らかにする。
- 参考スコア(独自算出の注目度): 2.5782420501870287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new simulation-based estimation method, adversarial estimation,
for structural models. The estimator is formulated as the solution to a minimax
problem between a generator (which generates simulated observations using the
structural model) and a discriminator (which classifies whether an observation
is simulated). The discriminator maximizes the accuracy of its classification
while the generator minimizes it. We show that, with a sufficiently rich
discriminator, the adversarial estimator attains parametric efficiency under
correct specification and the parametric rate under misspecification. We
advocate the use of a neural network as a discriminator that can exploit
adaptivity properties and attain fast rates of convergence. We apply our method
to the elderly's saving decision model and show that our estimator uncovers the
bequest motive as an important source of saving across the wealth distribution,
not only for the rich.
- Abstract(参考訳): 構造モデルに対する新しいシミュレーションベース推定法である逆推定法を提案する。
推定器は、発電機(構造モデルを用いたシミュレーション観測を生成する)と判別器(観察がシミュレーションされているかどうかを分類する)の間のミニマックス問題の解として定式化される。
判別器は分類の精度を最大化し、生成器はそれを最小化する。
十分リッチな判別器により、逆推定器は正しい仕様の下ではパラメトリック効率を、誤特定下ではパラメトリック率を達成する。
我々は,適応性特性を活用し,収束速度の速い識別器としてニューラルネットワークの利用を提唱する。
本手法を高齢者の貯蓄意思決定モデルに適用し,富裕層だけでなく富裕層においても,富裕層に対する貯蓄の源泉として,その動機を明らかにする。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Dual Student Networks for Data-Free Model Stealing [79.67498803845059]
主な課題は、パラメータにアクセスせずにターゲットモデルの勾配を推定し、多様なトレーニングサンプルを生成することである。
そこで本研究では,2人の学生が左右対称に学習し,学生が反対するサンプルを生成するための基準を提案する。
我々の新しい最適化フレームワークは、目標モデルのより正確な勾配推定と、ベンチマーク分類データセットの精度向上を提供する。
論文 参考訳(メタデータ) (2023-09-18T18:11:31Z) - Leveraging Variational Autoencoders for Parameterized MMSE Estimation [10.141454378473972]
条件付き線形最小二乗誤差推定器のパラメータ化のための変分オートエンコーダに基づくフレームワークを提案する。
導出した推定器は、推定問題の生成前として変分オートエンコーダを用いて最小平均2乗誤差推定器を近似する。
提案手法と最小平均二乗誤差推定器の差分を限定して厳密な解析を行う。
論文 参考訳(メタデータ) (2023-07-11T15:41:34Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Doubly Robust Counterfactual Classification [1.8907108368038217]
本研究では,仮説的(事実とは対照的に)なシナリオ下での意思決定のための新しいツールとして,カウンターファクトの分類について検討する。
本稿では, 一般対物分類器のための2次ロバストな非パラメトリック推定器を提案する。
論文 参考訳(メタデータ) (2023-01-15T22:04:46Z) - Deciding What to Model: Value-Equivalent Sampling for Reinforcement
Learning [21.931580762349096]
本稿では,エージェントが真のモデルの代わりにターゲットにできるような,ほぼ等価でロッキーな環境圧縮を計算するアルゴリズムを提案する。
有限水平, エピソディックな逐次決定問題を解くアルゴリズムに対して, 情報理論的, ベイズ的後悔を証明した。
論文 参考訳(メタデータ) (2022-06-04T23:36:38Z) - Tractable and Near-Optimal Adversarial Algorithms for Robust Estimation
in Contaminated Gaussian Models [1.609950046042424]
ハマーの汚染されたガウスモデルの下での位置と分散行列の同時推定の問題を考える。
まず,非パラメトリック判別器を用いた生成逆数法に対応する最小$f$-divergence推定法について検討した。
ネスト最適化により実装可能な,単純なスプライン判別器を用いたトラクタブル逆数アルゴリズムを開発した。
提案手法は,$f$-divergenceと使用したペナルティに応じて,最小値の最適値またはほぼ最適値を達成する。
論文 参考訳(メタデータ) (2021-12-24T02:46:51Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - A bandit-learning approach to multifidelity approximation [7.960229223744695]
マルチファイデリティ近似は、科学計算とシミュレーションにおいて重要な技術である。
異なる忠実度のデータを利用して正確な推定を行うためのバンディットラーニング手法を紹介します。
論文 参考訳(メタデータ) (2021-03-29T05:29:35Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Learning Minimax Estimators via Online Learning [55.92459567732491]
確率分布のパラメータを推定するミニマックス推定器を設計する際の問題点を考察する。
混合ケースナッシュ平衡を求めるアルゴリズムを構築した。
論文 参考訳(メタデータ) (2020-06-19T22:49:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。