Bridging Maximum Likelihood and Adversarial Learning via
$\alpha$-Divergence
- URL: http://arxiv.org/abs/2007.06178v1
- Date: Mon, 13 Jul 2020 04:06:43 GMT
- Title: Bridging Maximum Likelihood and Adversarial Learning via
$\alpha$-Divergence
- Authors: Miaoyun Zhao, Yulai Cong, Shuyang Dai, Lawrence Carin
- Abstract summary: We propose an $alpha$-Bridge to unify the advantages of ML and adversarial learning.
We reveal that generalizations of the $alpha$-Bridge are closely related to approaches developed recently to regularize adversarial learning.
- Score: 78.26304241440113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maximum likelihood (ML) and adversarial learning are two popular approaches
for training generative models, and from many perspectives these techniques are
complementary. ML learning encourages the capture of all data modes, and it is
typically characterized by stable training. However, ML learning tends to
distribute probability mass diffusely over the data space, $e.g.$, yielding
blurry synthetic images. Adversarial learning is well known to synthesize
highly realistic natural images, despite practical challenges like mode
dropping and delicate training. We propose an $\alpha$-Bridge to unify the
advantages of ML and adversarial learning, enabling the smooth transfer from
one to the other via the $\alpha$-divergence. We reveal that generalizations of
the $\alpha$-Bridge are closely related to approaches developed recently to
regularize adversarial learning, providing insights into that prior work, and
further understanding of why the $\alpha$-Bridge performs well in practice.
Related papers
- FLARE: Robot Learning with Implicit World Modeling [87.81846091038676]
$textbfFLARE$ integrates predictive latent world modeling into robot policy learning.<n>$textbfFLARE$ achieves state-of-the-art performance, outperforming prior policy learning baselines by up to 26%.<n>Our results establish $textbfFLARE$ as a general and scalable approach for combining implicit world modeling with high-frequency robotic control.
arXiv Detail & Related papers (2025-05-21T15:33:27Z) - Disentangled World Models: Learning to Transfer Semantic Knowledge from Distracting Videos for Reinforcement Learning [93.58897637077001]
This paper tries to learn and understand underlying semantic variations from distracting videos via offline-to-online latent distillation and flexible disentanglement constraints.
We pretrain the action-free video prediction model offline with disentanglement regularization to extract semantic knowledge from distracting videos.
For finetuning in the online environment, we exploit the knowledge from the pretrained model and introduce a disentanglement constraint to the world model.
arXiv Detail & Related papers (2025-03-11T13:50:22Z) - Learning on Less: Constraining Pre-trained Model Learning for Generalizable Diffusion-Generated Image Detection [13.610095493539394]
Diffusion Models enable realistic image generation, raising the risk of misinformation and eroding public trust.
Currently, detecting images generated by unseen diffusion models remains challenging due to the limited generalization capabilities of existing methods.
We propose a simple yet effective training method called Learning on Less (LoL)
arXiv Detail & Related papers (2024-12-01T04:01:43Z) - Learning to Walk from Three Minutes of Real-World Data with Semi-structured Dynamics Models [9.318262213262866]
We introduce a novel framework for learning semi-structured dynamics models for contact-rich systems.
We make accurate long-horizon predictions with substantially less data than prior methods.
We validate our approach on a real-world Unitree Go1 quadruped robot.
arXiv Detail & Related papers (2024-10-11T18:11:21Z) - Mixture of Low-rank Experts for Transferable AI-Generated Image Detection [18.631006488565664]
Generative models have shown a giant leap in photo-realistic images with minimal expertise, sparking concerns about the authenticity of online information.
This study aims to develop a universal AI-generated image detector capable of identifying images from diverse sources.
Inspired by the zero-shot transferability of pre-trained vision-language models, we seek to harness the non-trivial visual-world knowledge and descriptive proficiency of CLIP-ViT to generalize over unknown domains.
arXiv Detail & Related papers (2024-04-07T09:01:50Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
Self-supervised learning can be used for mitigating the greedy needs of Vision Transformer networks.
We propose a single-stage and standalone method, MOCA, which unifies both desired properties.
We achieve new state-of-the-art results on low-shot settings and strong experimental results in various evaluation protocols.
arXiv Detail & Related papers (2023-07-18T15:46:20Z) - Coherent Soft Imitation Learning [17.345411907902932]
Imitation learning methods seek to learn from an expert either through behavioral cloning (BC) of the policy or inverse reinforcement learning (IRL) of the reward.
This work derives an imitation method that captures the strengths of both BC and IRL.
arXiv Detail & Related papers (2023-05-25T21:54:22Z) - Curriculum-Based Imitation of Versatile Skills [15.97723808124603]
Learning skills by imitation is a promising concept for the intuitive teaching of robots.
A common way to learn such skills is to learn a parametric model by maximizing the likelihood given the demonstrations.
Yet, human demonstrations are often multi-modal, i.e., the same task is solved in multiple ways.
arXiv Detail & Related papers (2023-04-11T12:10:41Z) - Deep Active Learning Using Barlow Twins [0.0]
The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images.
The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool.
We propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets.
arXiv Detail & Related papers (2022-12-30T12:39:55Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Virtual embeddings and self-consistency for self-supervised learning [43.086696088061416]
TriMix is a novel concept for self-supervised learning that generates virtual embeddings through linear data.
We validate TriMix on eight benchmark datasets with an improvement of 2.71% and 0.41% better than the second-best models for both data types.
arXiv Detail & Related papers (2022-06-13T10:20:28Z) - Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot
Learning [82.07273754143547]
We propose a meta-continual zero-shot learning (MCZSL) approach to generalizing a model to categories unseen during training.
By pairing self-gating of attributes and scaled class normalization with meta-learning based training, we are able to outperform state-of-the-art results.
arXiv Detail & Related papers (2021-02-23T18:36:14Z) - An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human
Pose Estimation [80.02124918255059]
Semi-supervised learning aims to boost the accuracy of a model by exploring unlabeled images.
We learn two networks to mutually teach each other.
The more reliable predictions on easy images in each network are used to teach the other network to learn about the corresponding hard images.
arXiv Detail & Related papers (2020-11-25T03:29:52Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.