Learning on Less: Constraining Pre-trained Model Learning for Generalizable Diffusion-Generated Image Detection
- URL: http://arxiv.org/abs/2412.00665v1
- Date: Sun, 01 Dec 2024 04:01:43 GMT
- Title: Learning on Less: Constraining Pre-trained Model Learning for Generalizable Diffusion-Generated Image Detection
- Authors: Yingjian Chen, Lei Zhang, Yakun Niu, Lei Tan, Pei Chen,
- Abstract summary: Diffusion Models enable realistic image generation, raising the risk of misinformation and eroding public trust.
Currently, detecting images generated by unseen diffusion models remains challenging due to the limited generalization capabilities of existing methods.
We propose a simple yet effective training method called Learning on Less (LoL)
- Score: 13.610095493539394
- License:
- Abstract: Diffusion Models enable realistic image generation, raising the risk of misinformation and eroding public trust. Currently, detecting images generated by unseen diffusion models remains challenging due to the limited generalization capabilities of existing methods. To address this issue, we rethink the effectiveness of pre-trained models trained on large-scale, real-world images. Our findings indicate that: 1) Pre-trained models can cluster the features of real images effectively. 2) Models with pre-trained weights can approximate an optimal generalization solution at a specific training step, but it is extremely unstable. Based on these facts, we propose a simple yet effective training method called Learning on Less (LoL). LoL utilizes a random masking mechanism to constrain the model's learning of the unique patterns specific to a certain type of diffusion model, allowing it to focus on less image content. This leverages the inherent strengths of pre-trained weights while enabling a more stable approach to optimal generalization, which results in the extraction of a universal feature that differentiates various diffusion-generated images from real images. Extensive experiments on the GenImage benchmark demonstrate the remarkable generalization capability of our proposed LoL. With just 1% training data, LoL significantly outperforms the current state-of-the-art, achieving a 13.6% improvement in average ACC across images generated by eight different models.
Related papers
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Integrating Amortized Inference with Diffusion Models for Learning Clean Distribution from Corrupted Images [19.957503854446735]
Diffusion models (DMs) have emerged as powerful generative models for solving inverse problems.
FlowDiff is a joint training paradigm that leverages a conditional normalizing flow model to facilitate the training of diffusion models on corrupted data sources.
Our experiment shows that FlowDiff can effectively learn clean distributions across a wide range of corrupted data sources.
arXiv Detail & Related papers (2024-07-15T18:33:20Z) - Mixture of Low-rank Experts for Transferable AI-Generated Image Detection [18.631006488565664]
Generative models have shown a giant leap in photo-realistic images with minimal expertise, sparking concerns about the authenticity of online information.
This study aims to develop a universal AI-generated image detector capable of identifying images from diverse sources.
Inspired by the zero-shot transferability of pre-trained vision-language models, we seek to harness the non-trivial visual-world knowledge and descriptive proficiency of CLIP-ViT to generalize over unknown domains.
arXiv Detail & Related papers (2024-04-07T09:01:50Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Large-scale Reinforcement Learning for Diffusion Models [30.164571425479824]
Text-to-image diffusion models are susceptible to implicit biases that arise from web-scale text-image training pairs.
We present an effective scalable algorithm to improve diffusion models using Reinforcement Learning (RL)
We show how our approach substantially outperforms existing methods for aligning diffusion models with human preferences.
arXiv Detail & Related papers (2024-01-20T08:10:43Z) - Conditional Image Generation with Pretrained Generative Model [1.4685355149711303]
diffusion models have gained popularity for their ability to generate higher-quality images in comparison to GAN models.
These models require a huge amount of data, computational resources, and meticulous tuning for successful training.
We propose methods to leverage pre-trained unconditional diffusion models with additional guidance for the purpose of conditional image generative.
arXiv Detail & Related papers (2023-12-20T18:27:53Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
We propose a novel two-stage divide-and-conquer training strategy termed TDC Training.
It groups timesteps based on task similarity and difficulty, assigning highly customized denoising models to each group, thereby enhancing the performance of diffusion models.
While two-stage training avoids the need to train each model separately, the total training cost is even lower than training a single unified denoising model.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - Masked Diffusion Models Are Fast Distribution Learners [32.485235866596064]
Diffusion models are commonly trained to learn all fine-grained visual information from scratch.
We show that it suffices to train a strong diffusion model by first pre-training the model to learn some primer distribution.
Then the pre-trained model can be fine-tuned for various generation tasks efficiently.
arXiv Detail & Related papers (2023-06-20T08:02:59Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
We show that density estimates from large-scale text-to-image diffusion models can be leveraged to perform zero-shot classification.
Our generative approach to classification attains strong results on a variety of benchmarks.
Our results are a step toward using generative over discriminative models for downstream tasks.
arXiv Detail & Related papers (2023-03-28T17:59:56Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.