Learning to Walk from Three Minutes of Real-World Data with Semi-structured Dynamics Models
- URL: http://arxiv.org/abs/2410.09163v2
- Date: Mon, 28 Oct 2024 17:13:05 GMT
- Title: Learning to Walk from Three Minutes of Real-World Data with Semi-structured Dynamics Models
- Authors: Jacob Levy, Tyler Westenbroek, David Fridovich-Keil,
- Abstract summary: We introduce a novel framework for learning semi-structured dynamics models for contact-rich systems.
We make accurate long-horizon predictions with substantially less data than prior methods.
We validate our approach on a real-world Unitree Go1 quadruped robot.
- Score: 9.318262213262866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditionally, model-based reinforcement learning (MBRL) methods exploit neural networks as flexible function approximators to represent $\textit{a priori}$ unknown environment dynamics. However, training data are typically scarce in practice, and these black-box models often fail to generalize. Modeling architectures that leverage known physics can substantially reduce the complexity of system-identification, but break down in the face of complex phenomena such as contact. We introduce a novel framework for learning semi-structured dynamics models for contact-rich systems which seamlessly integrates structured first principles modeling techniques with black-box auto-regressive models. Specifically, we develop an ensemble of probabilistic models to estimate external forces, conditioned on historical observations and actions, and integrate these predictions using known Lagrangian dynamics. With this semi-structured approach, we can make accurate long-horizon predictions with substantially less data than prior methods. We leverage this capability and propose Semi-Structured Reinforcement Learning ($\texttt{SSRL}$) a simple model-based learning framework which pushes the sample complexity boundary for real-world learning. We validate our approach on a real-world Unitree Go1 quadruped robot, learning dynamic gaits -- from scratch -- on both hard and soft surfaces with just a few minutes of real-world data. Video and code are available at: https://sites.google.com/utexas.edu/ssrl
Related papers
- Drama: Mamba-Enabled Model-Based Reinforcement Learning Is Sample and Parameter Efficient [9.519619751861333]
We propose a state space model (SSM) based world model based on Mamba.
It achieves $O(n)$ memory and computational complexity while effectively capturing long-term dependencies.
This model is accessible and can be trained on an off-the-shelf laptop.
arXiv Detail & Related papers (2024-10-11T15:10:40Z) - Learning to Continually Learn with the Bayesian Principle [36.75558255534538]
In this work, we adopt the meta-learning paradigm to combine the strong representational power of neural networks and simple statistical models' robustness to forgetting.
Since the neural networks remain fixed during continual learning, they are protected from catastrophic forgetting.
arXiv Detail & Related papers (2024-05-29T04:53:31Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
Recently, model-based reinforcement learning algorithms have demonstrated remarkable efficacy in visual input environments.
We introduce Transformer-based wORld Model (STORM), an efficient world model architecture that combines strong modeling and generation capabilities.
Storm achieves a mean human performance of $126.7%$ on the Atari $100$k benchmark, setting a new record among state-of-the-art methods.
arXiv Detail & Related papers (2023-10-14T16:42:02Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Dynamic Mixed Membership Stochastic Block Model for Weighted Labeled
Networks [3.5450828190071655]
A new family of Mixed Membership Block Models (MMSBM) allows to model static labeled networks under the assumption of mixed-membership clustering.
We show that our method significantly differs from existing approaches, and allows to model more complex systems --dynamic labeled networks.
arXiv Detail & Related papers (2023-04-12T15:01:03Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Differentiable Physics Models for Real-world Offline Model-based
Reinforcement Learning [34.558299591341]
A limitation of model-based reinforcement learning is the exploitation of errors in the learned models.
We show that physics-based models can be beneficial compared to high-capacity function approximators if the mechanical structure is known.
arXiv Detail & Related papers (2020-11-03T14:37:53Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.