Quantum metrology via chaos in a driven Bose-Josephson system
- URL: http://arxiv.org/abs/2007.06210v1
- Date: Mon, 13 Jul 2020 07:05:27 GMT
- Title: Quantum metrology via chaos in a driven Bose-Josephson system
- Authors: Wenjie Liu, Min Zhuang, Bo Zhu, Jiahao Huang, Chaohong Lee
- Abstract summary: Entanglement preparation and signal accumulation are essential for quantum parameter estimation.
We propose how to utilize chaotic dynamics in a periodically driven Bose-Josephson system for achieving a high-precision measurement.
- Score: 7.427384041389277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement preparation and signal accumulation are essential for quantum
parameter estimation, which pose significant challenges to both theories and
experiments. Here, we propose how to utilize chaotic dynamics in a periodically
driven Bose-Josephson system for achieving a high-precision measurement beyond
the standard quantum limit (SQL). Starting from an initial non-entangled state,
the chaotic dynamics generates quantum entanglement and simultaneously encodes
the parameter to be estimated. By using suitable chaotic dynamics, the ultimate
measurement precision of the estimated parameter can beat the SQL. The sub-SQL
measurement precision scaling can also be obtained via specific observables,
such as population measurements, which can be realized with state-of-art
techniques. Our study not only provides new insights for understanding quantum
chaos and quantum-classical correspondence, but also is of promising
applications in entanglement-enhanced quantum metrology.
Related papers
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Adaptive measurement strategy for quantum subspace methods [0.0]
We propose an adaptive measurement optimization method that is useful for the quantum subspace methods.
The proposed method first determines the measurement protocol for classically simulatable states, and then adaptively updates the protocol of quantum subspace expansion.
As a numerical demonstration, we have shown for excited-state simulation of molecules that we are able to reduce the number of measurements by an order of magnitude.
arXiv Detail & Related papers (2023-11-14T04:00:59Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Efficient qubit phase estimation using adaptive measurements [0.0]
Estimating the quantum phase of a physical system is a central problem in quantum parameter estimation theory.
Current methods to estimate quantum phases fail to reach the quantum Cram'er-Rao bound.
We propose a new adaptive scheme based on covariant measurements to circumvent this problem.
arXiv Detail & Related papers (2020-12-21T02:43:47Z) - Estimation of pure quantum states in high dimension at the limit of
quantum accuracy through complex optimization and statistical inference [0.0]
Quantum tomography has become a key tool for the assessment of quantum states, processes, and devices.
In the case of mixed states of a single 2-dimensional quantum system adaptive methods have been recently introduced that achieve the theoretical accuracy limit deduced by Hayashi and Gill and Massar.
Here we present an adaptive tomographic method and show through numerical simulations, that it is difficult to approach the fundamental accuracy of pure quantum states in high dimension.
arXiv Detail & Related papers (2020-07-02T21:33:16Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.