論文の概要: Artificial Neural Networks Jamming on the Beat
- arxiv url: http://arxiv.org/abs/2007.06284v3
- Date: Thu, 20 May 2021 07:00:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-11-11 00:52:08.209697
- Title: Artificial Neural Networks Jamming on the Beat
- Title(参考訳): ビートを妨害する人工ニューラルネットワーク
- Authors: Alexey Tikhonov, Ivan P. Yamshchikov
- Abstract要約: 本稿では,ドラムパターンの大規模データセットと対応するメロディについて述べる。
ドラムパターンの潜伏した空間を探索すれば 特定の音楽スタイルで 新しいドラムパターンを創り出すことができます
単純な人工ニューラルネットワークは、入力として使用されるドラムパッターに対応するメロディを生成するように訓練することができる。
- 参考スコア(独自算出の注目度): 20.737171876839238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the issue of long-scale correlations that is
characteristic for symbolic music and is a challenge for modern generative
algorithms. It suggests a very simple workaround for this challenge, namely,
generation of a drum pattern that could be further used as a foundation for
melody generation. The paper presents a large dataset of drum patterns
alongside with corresponding melodies. It explores two possible methods for
drum pattern generation. Exploring a latent space of drum patterns one could
generate new drum patterns with a given music style. Finally, the paper
demonstrates that a simple artificial neural network could be trained to
generate melodies corresponding with these drum patters used as inputs.
Resulting system could be used for end-to-end generation of symbolic music with
song-like structure and higher long-scale correlations between the notes.
- Abstract(参考訳): 本稿では,シンボリック音楽に特徴的な長期相関の問題に対処し,近代的な生成アルゴリズムの課題である。
これは、この挑戦の非常に単純な回避策、すなわち、メロディ生成の基礎としてさらに使えるドラムパターンの生成を示唆している。
本稿では,ドラムパターンの大規模データセットと対応するメロディについて述べる。
ドラムパターン生成には2つの方法がある。
ドラムパターンの潜在空間を探索することで、所定の音楽スタイルで新しいドラムパターンを生成することができる。
最後に,単純なニューラルネットワークを用いて,入力として使用するドラムパッターに対応するメロディを生成することができることを示した。
楽曲構造と音符間の長大な相関性を有するシンボリック音楽のエンド・ツー・エンド生成に,結果システムを用いることができる。
関連論文リスト
- Graph-based Polyphonic Multitrack Music Generation [9.701208207491879]
本稿では,音楽のための新しいグラフ表現と,音楽グラフの構造と内容を別々に生成する深部変分オートエンコーダを提案する。
音楽グラフの構造と内容を分離することにより、特定のタイミングでどの楽器が演奏されているかを指定することで条件生成が可能となる。
論文 参考訳(メタデータ) (2023-07-27T15:18:50Z) - Unsupervised Melody-to-Lyric Generation [91.29447272400826]
本稿では,メロディ・歌詞データを学習することなく高品質な歌詞を生成する手法を提案する。
我々は、メロディと歌詞のセグメンテーションとリズムアライメントを利用して、与えられたメロディをデコード制約にコンパイルする。
我々のモデルは、強いベースラインよりもオントピー的、歌いやすく、知性があり、一貫性のある高品質な歌詞を生成することができる。
論文 参考訳(メタデータ) (2023-05-30T17:20:25Z) - Unsupervised Melody-Guided Lyrics Generation [84.22469652275714]
メロディと歌詞の一致したデータを学習することなく、楽しく聴ける歌詞を生成することを提案する。
メロディと歌詞間の重要なアライメントを活用し、与えられたメロディを制約にコンパイルし、生成プロセスを導く。
論文 参考訳(メタデータ) (2023-05-12T20:57:20Z) - Museformer: Transformer with Fine- and Coarse-Grained Attention for
Music Generation [138.74751744348274]
本研究では,音楽生成に新たな細粒度・粗粒度対応トランスフォーマーであるMuseformerを提案する。
具体的には、細かな注意を払って、特定のバーのトークンは、音楽構造に最も関係のあるバーのトークンに、直接参加する。
粗い注意を払って、トークンは計算コストを減らすために、それぞれのトークンではなく他のバーの要約にのみ参加する。
論文 参考訳(メタデータ) (2022-10-19T07:31:56Z) - Setting the rhythm scene: deep learning-based drum loop generation from
arbitrary language cues [0.0]
言語キューの「ムード」を具現化した4ピースドラムパターンの2コンパスを生成する新しい手法を提案する。
我々は,このツールを電子音楽とオーディオヴィジュアルサウンドトラック制作のための作曲支援,あるいはライブ演奏のための即興ツールとして想定する。
このモデルのトレーニングサンプルを作成するため,各曲のコンセンサス・ドラムトラックを抽出する新たな手法を考案した。
論文 参考訳(メタデータ) (2022-09-20T21:53:35Z) - Generating Coherent Drum Accompaniment With Fills And Improvisations [8.334918207379172]
4つのメロディック楽器が演奏する伴奏音楽に基づくドラムパターン生成の課題に取り組む。
本稿では,近隣のバーの即興度を推定する新規関数を提案する。
メロディック伴奏トラックから即興位置を予測するためのモデルを訓練する。
論文 参考訳(メタデータ) (2022-09-01T08:31:26Z) - Re-creation of Creations: A New Paradigm for Lyric-to-Melody Generation [158.54649047794794]
Re-creation of Creations (ROC)は、歌詞からメロディ生成のための新しいパラダイムである。
ROCは、Lyric-to-Meody生成において、優れたLyric-Meody特徴アライメントを実現する。
論文 参考訳(メタデータ) (2022-08-11T08:44:47Z) - Conditional Drums Generation using Compound Word Representations [4.435094091999926]
複合語表現にインスパイアされた新しいデータ符号化方式を用いて、条件付きドラム生成の課題に取り組む。
本稿では,双方向長短期メモリ(BiLSTM)が条件パラメータに関する情報を受信するシーケンス・ツー・シーケンスアーキテクチャを提案する。
比較的グローバルな注目を集めたトランスフォーマーベースのデコーダが生成したドラムシーケンスを生成する。
論文 参考訳(メタデータ) (2022-02-09T13:49:27Z) - Can GAN originate new electronic dance music genres? -- Generating novel
rhythm patterns using GAN with Genre Ambiguity Loss [0.0]
本稿では,音楽生成,特に電子舞踊音楽のリズムパターンに着目し,深層学習を用いて新しいリズムを生成できるかを論じる。
我々は、GAN(Generative Adversarial Networks)のフレームワークを拡張し、データセット固有の分布から分岐することを奨励する。
提案したGANは、音楽リズムのように聞こえるリズムパターンを生成できるが、トレーニングデータセットのどのジャンルにも属さないことを示す。
論文 参考訳(メタデータ) (2020-11-25T23:22:12Z) - Melody-Conditioned Lyrics Generation with SeqGANs [81.2302502902865]
本稿では,SeqGAN(Sequence Generative Adversarial Networks)に基づく,エンドツーエンドのメロディ条件付き歌詞生成システムを提案する。
入力条件が評価指標に悪影響を及ぼすことなく,ネットワークがより有意義な結果が得られることを示す。
論文 参考訳(メタデータ) (2020-10-28T02:35:40Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
本稿では,オンライン伴奏生成のための深層強化学習アルゴリズムを提案する。
提案アルゴリズムは人体に応答し,メロディック,ハーモニック,多種多様な機械部品を生成する。
論文 参考訳(メタデータ) (2020-02-08T03:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。